Crystallization of Amorphous Al85Ce5Ni10 Ribbon

Abstract:

Article Preview

In the present work the crystallization process of an aluminum-based amorphous metal have been investigated. Rapidly quenched Al85Ce5Ni10 ribbon has been produced by melt-spinning. The amorphous structure evolution during heating has been studied by a combination of X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermograms obtained in continuous heating regime reveal a glass transition, Tg, resulting in a supercooled liquid temperature range of ∼16°C. Multiple crystallization events were observed by isothermal annealing of the as-quenched melt-spun ribbon at temperatures below Tg; precipitation of a metastable phase in the amorphous matrix has been observed. Further heating at increasing temperatures resulted in complete crystallization with α-Al and intermetallic compounds. Kinetics analyses indicate that crystallization occurs though nucleation and three-dimensional growth.

Info:

Periodical:

Edited by:

Dílson S. dos Santos

Pages:

126-131

Citation:

C. Triveño Rios et al., "Crystallization of Amorphous Al85Ce5Ni10 Ribbon", Materials Science Forum, Vol. 570, pp. 126-131, 2008

Online since:

February 2008

Export:

Price:

$38.00

[1] S. J. Savage, F.H. Froes, in: B.H. Kear, B.C. Giessen (Eds. ), Rapidly Solidified Metastable Materials, Elsevier Science, New York, (1984), p.29.

[2] M. Fass, D. Itzhak, D. Eliezer, F.H. Froes, J. Mater. Sci. Lett., 6 (1987) 1227.

[3] Y. He, S. J. Poon, G. J. Shiflet, Science, v. 241, (1988) 1640.

[4] A. Inoue, K. Ohtera, A.P. Tsai, T. Masumoto, Jpn. J. Appl. Phys. 27 (1988) L479.

[5] Y.H. Kim, A. Inoue, T. Masumoto, Mater. Trans. JIM, 32 (1991) 331.

[6] T. Gloriant, A.L. Greer, Nanostruct. Mater., 10 (1998) 389.

[7] M. A. Muñoz-Morris, S. Suriñach, M.D. Baró, D.G. Morris, Journal of Metastable and Nanocrystal/ine Malerials, 15-16 (2003) 61.

[8] Z. Fang, W. Youshi, Z. Chuanjiang, Z. Zhiqian, S. YuanChang, Z. Guorong, J. Phys.: Conden. Matter., 14 (2002) 1163.

[9] H. E. Kissinger, Analyt. Chem., 29 (1957) 1702.

[10] F. Q. Guo, S.J. Poon, G. J. Shiglet, Mater. Sci. Forum, 331-337 (2000) 31.

[11] M. Gich, T. Gloriant, S. Suriñach, A. L. Greer, M. D. Baró, Journal of Non Non-Crystalline Solids, 289 (2001) 214.

DOI: https://doi.org/10.1016/s0022-3093(01)00650-0

[12] A. Inoue, K. Nakazato, Y. Kawamura, A.P. Tsai and T. Masumoto, Materials. Trans. JIM., 35 (1994) 102.

[13] Á. Révész, G. Heunen, L.K. Varga, S. Suriñach, M.D. Baró, Journal of Alloys and Compounds, 368 (2004) 164.

DOI: https://doi.org/10.1016/j.jallcom.2003.07.021

[14] K. Hono et al. Mater. Sci. Eng., A226-228 (1997) 498.

[15] T Pradell, D Crespo, N Clavaguera, M. T. Clavaguera-Mora, J. Phys.: Condens. Matter 10 (1998), p.3833.

[16] M. Avrami, J. Phys. Chem., 8 (1940) 212.

[17] J. W. Christian (Ed. ), The Theory of Transformations in Metals and Alloys, Pergamon, London, (1981).

[18] L. Liu, K.C. Chan, Journal of Alloys and Compounds, 364 (2004) 146.

Fetching data from Crossref.
This may take some time to load.