The Role of Zr in the High-Temperature Oxidation of Fe3Al

Abstract:

Article Preview

The paper describes an examination of the effect of the addition of zirconium as a third element on the heat-resisting properties and explains the high temperature oxidation mechanism of Fe3Al intermetallic compounds. The Fe3Al and Fe3Al-0,05Zr specimens have been isothermally oxidized in the temperature range of 1173-1473 K in synthetic air for 100 hrs. The formed oxide layer, about 1,5-2 μm thick, was Al2O3. An examination of the cross-sectioned scales by SEM-EDS showed that the alumina layer consisted of a small inner columnar layer and an outer equiaxed grain layer. Additionally, very fine (50-150 nm) oxide grains rich in Zr, further identified as ZrO2, were found across the alumina scales. To understand the role of Zr on the growth mechanism of α–Al2O3 oxide scale on Fe3Al materials, two-stage oxidation experiments were performed (16O2/18O2), followed by SIMS and TEM-SAD observations. Particular attention was paid to the use of TEM in order to precisely characterize the products on samples prepared using the FIB (Focused Ion Beam) method. A combination of analytical techniques revealed that ZrO2 particles, most of which were formed along alumina grain boundaries, enhanced oxygen diffusion along grain boundaries due to oxygen-deficient composition of zirconium oxide (ZrO2-y).

Info:

Periodical:

Materials Science Forum (Volumes 595-598)

Edited by:

Pierre Steinmetz, Ian G. Wright, Alain Galerie, Daniel Monceau and Stéphane Mathieu

Pages:

1103-1110

DOI:

10.4028/www.scientific.net/MSF.595-598.1103

Citation:

K. Przybylski et al., "The Role of Zr in the High-Temperature Oxidation of Fe3Al", Materials Science Forum, Vols. 595-598, pp. 1103-1110, 2008

Online since:

September 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.