Solid Reactions between Enamel and O-Phase Ti-Al-Nb Intermetallics at 800 °C


Article Preview

The specimens of O-phase Ti-22Al-25Nb (at%) intermetallics coated with silica-based enamel received mass gains of about 1 mg/cm2, after 300 h of oxidation or hot corrosion at 800 °C. These rates were much faster than the growth rates of silica films at the same temperature. To understand this phenomena, the specimens were analyzed using SEM, XRD, EPMA and TEM. An oxide layer with thickness of several μm was observed at the enamel/substrate interface of the coated specimens after either oxidation or hot corrosion. XRD and TEM analysis revealed the newly formed oxide layer was composed of α-Al2O3, Al2SiO5, Al2TiO5, rutile-TiO2 and NbO2. It was shown by EPMA profiling that an Al-depleted zone was located just beneath the oxides. It was proposed that the solid reactions between the enamel coating and the O-phase Ti-Al-Nb played important roles for the oxidation and hot corrosion behavior of the coated specimens.



Materials Science Forum (Volumes 595-598)

Edited by:

Pierre Steinmetz, Ian G. Wright, Alain Galerie, Daniel Monceau and Stéphane Mathieu






D.Y. Zheng et al., "Solid Reactions between Enamel and O-Phase Ti-Al-Nb Intermetallics at 800 °C", Materials Science Forum, Vols. 595-598, pp. 233-238, 2008

Online since:

September 2008




In order to see related information, you need to Login.