Modelling of Corrosion Induced Stresses during Zircaloy-4 Oxidation in Air

Abstract:

Article Preview

In the frame of its research work on nuclear fuel safety, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has highlighted the importance of cladding tube oxidation on its thermomechanical behavior. The occurrence of radial cracking and spallation has been observed as the main mechanisms for the zirconia layer degradation during transient experiments. A study of these two mechanisms has been jointly launched by IRSN and Areva-NP. Thus laboratory air oxidations of fully recrystallized or stress-relieved low-tin Zircaloy-4 cladding tubes have been performed. Representative oxide layer thicknesses varying from 10 to 100 0m have been obtained. SEM micrographs of the obtained oxidised samples show that short circumferential cracks are periodically distributed in the oxide thickness. For specimens with oxide film thickness greater than 30 0m, radial cracks are initiated from the outer surface of the oxide layer and propagated radially. Veins characterised by the lack of circumferentially orientated crack are evidenced. All these phenomena are mainly linked to high compressive stress levels in the zirconia layer. A model describing the stress evolution in the oxide and in the cladding has been developed. This model takes into account the influence of elasticity, cladding creep, oxide growth and thermal expansion. Deflection tests data [15] are used to calibrate the oxide growth modelling. The model enables the evaluation of strain or stress profile in the oxide layer and in the base metal. Numerical results are in good agreement with a large set of axial and circumferential strains measurements. Further a better understanding of cracking mechanisms is achieved considering the good agreement between experimental and numerical analysis.

Info:

Periodical:

Materials Science Forum (Volumes 595-598)

Edited by:

Pierre Steinmetz, Ian G. Wright, Alain Galerie, Daniel Monceau and Stéphane Mathieu

Pages:

419-427

DOI:

10.4028/www.scientific.net/MSF.595-598.419

Citation:

V. Busser et al., "Modelling of Corrosion Induced Stresses during Zircaloy-4 Oxidation in Air ", Materials Science Forum, Vols. 595-598, pp. 419-427, 2008

Online since:

September 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.