Study of High Co Superhard High Speed Steel Surface


Article Preview

Cobalt- superhard high speed steel layer has been formed on the surface of low alloy steel 20Cr2V by tungsten-molybdenum-cobalt plasma surface alloying and following plasma carbonizing. After plasma surface alloying, a homogeneous and dense surface alloying layer was formed, thickness of which is 200μm. Composition, microstructure and properties of the alloying layer were investigated. Contents of W, Mo, Co, Cr, V and C in the surface layer reach 8%,5%, 6% ,4%,1.5% and 1.5% or so respectively. The concentrations of alloy elements basically meet the requirements of high cobalt type superhard high speed steel. Constituent phases of the surface layer were martensite, M7C3 ,M2C and Cr3C2 carbides and μ phase after quenching treatment. The advanced gradient superhard high speed steel possesses not only high surface hardness, high anti-temper softening ability but also enough toughness.



Materials Science Forum (Volumes 610-613)

Main Theme:

Edited by:

Zhong Wei Gu, Yafang Han, Fu Sheng Pan, Xitao Wang, Duan Weng and Shaoxiong Zhou






Z. H. Li et al., "Study of High Co Superhard High Speed Steel Surface", Materials Science Forum, Vols. 610-613, pp. 253-256, 2009

Online since:

January 2009




In order to see related information, you need to Login.