Photo-EPR Studies on Low-Energy Electron-Irradiated 4H-SiC


Article Preview

Photoexcitation electron paramagnetic resonance (photo-EPR) was used to determine deep levels related to the carbon vacancy (VC) in 4H-SiC. High-purity free-standing n-type 4H-SiC epilayers with concentration of intrinsic defects (except the photo-insensitive SI1 center) below the detection limit of EPR were irradiated with low-energy (200 keV) electrons to create mainly VC and defects related to the C sublattice. The simultaneous observation of and signals, their relative intensity changes and the absence of other defects in the sample provide a more straight and reliable interpretation of the photo-EPR results. The study suggests that the (+|0) level of VC is located at ~EC–1.77 eV in agreement with previously reported results and its single and double acceptor levels may be at ~ EC–0.8 eV and ~ EC–1.0 eV, respectively.



Materials Science Forum (Volumes 615-617)

Edited by:

Amador Pérez-Tomás, Philippe Godignon, Miquel Vellvehí and Pierre Brosselard




P. Carlsson et al., "Photo-EPR Studies on Low-Energy Electron-Irradiated 4H-SiC", Materials Science Forum, Vols. 615-617, pp. 401-404, 2009

Online since:

March 2009