Optimization of Aluminium Die Casting Alloys for Enhanced Properties


Article Preview

Selecting an aluminum die casting alloy for a particular application often poses a challenge to designers and engineers. It is often difficult and sometimes not possible to find an alloy that meets all the requirements of the application; and in other times the alloy can be found, but it has a wide specified compositional range, and thus it exhibits a large variation in properties. Therefore, there is always a need to optimize existing alloys or to develop new alloys so that they meet the requirements of a given application. In order to help with the alloy selection and alloy development processes, we developed an electronic database for aluminum die casting alloys – i-Select-Al. This software can help its user to quickly select an alloy for a specific application from a comprehensive list of commercial alloys. Alternatively, it can help its user with the design of a new alloy to meet the requirements of the application. This paper presents a study in optimizing A380 alloy with the help of i-Select-Al. A380 alloy is the most commonly used die casting alloy, but it has a wide compositional range and therefore a wide range of properties. In this study, we optimized the mechanical properties of A380 alloy by optimizing its chemical composition. The Quality Index was used to quantify the changes in the alloys’ properties in response to changes in chemical composition. Two alloys were designed: one has a composition within the A380 alloy specification, and the other has a composition slightly outside the A380 alloy specification. Both alloys showed significant improvements in room temperature tensile properties and a substantial increase in the Quality Index over a commercially available A380 alloy.



Materials Science Forum (Volumes 618-619)

Edited by:

M.S. Dargusch & S.M. Keay






L. Wang et al., "Optimization of Aluminium Die Casting Alloys for Enhanced Properties", Materials Science Forum, Vols. 618-619, pp. 601-605, 2009

Online since:

April 2009




In order to see related information, you need to Login.

In order to see related information, you need to Login.