Preparation and Properties of Nanoclay/TPS/Asphalt Ternary Binders

Abstract:

Article Preview

After a preliminary investigation on the binary asphalt/clay binder, the ternary binder was prepared by adding the nanoclay and TAFPACK-SUPER (TPS) to the original asphalt. The previous research shows that exfoliated/intercalated layers homogeneously are dispersed in the asphalt matrix and the nanocomposite has formed. Rotation Thin Film Oven Test (RTFOT) and Pressure Age Vessel Test (PAV) results indicate that the modified asphalt with 3% organic nano-montmorillonite (OMMT) present better performance of aging resistance. The purpose of this research is to attain ternary asphalt binder with better rheological performance and aging resistance. The ternary modified asphalt binder containing 4% OMMT and 12% TPS by weight were prepared at the laboratory scale using high speed shearing mixer. The rheological properties of OMMT/TPS modified asphalt binders were evaluated before and after aging in present paper. Temperature sweep tests and frequency sweep tests were conducted to characterize the rheological properties of modified asphalt using Dynamic Shear Rheometer (DSR). According to the frequency sweep tests, complex modulus master curves were plotted to analysis the rheological properties. The results indicate that nanoclay/TPS/asphalt ternary binders have more excellent performance of rheological and aging resistance at both high and low temperatures, compared with the virginal bitumen and TPS modified asphalt.

Info:

Periodical:

Materials Science Forum (Volumes 620-622)

Edited by:

Hyungsun Kim, JienFeng Yang, Tohru Sekino and Soo Wohn Lee

Pages:

497-500

DOI:

10.4028/www.scientific.net/MSF.620-622.497

Citation:

S. P. Wu et al., "Preparation and Properties of Nanoclay/TPS/Asphalt Ternary Binders", Materials Science Forum, Vols. 620-622, pp. 497-500, 2009

Online since:

April 2009

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.