Solid State Sintering of SiC-Ceramics

Abstract:

Article Preview

The most interesting feature in silicon carbide is the structure-property relation where the formation of different types of microstructure due to different structural modifications (polytypism) and grain-boundary/interfacial phase chemistry dictate the final properties of the monoliths. Since synthesis of SiC in last century, several methods such as hot pressing with a sintering aid (B, C), pressureless sintering with a sintering aid (B, C, Al) and reaction bonded (Si-SiC) were used to fabricate dense SiC. A newer method of fast sintering (spark plasma sintering) using pulsed current is also employed to consolidate nano/submicron size SiC with or without additives. The solid state sintered SiC materials have fine-grained equiaxed microstructure (grain size 1 to 4 µm) with thin layer of intergranular phases (amorphous film), exhibit moderate high-temperature creep and oxidation resistance, fracture toughness (3 to 4 MPam1/2) and have highly flaw-sensitive strength at room temperature. The high temperature mechanical properties are highly influenced by the presence of free C, Al and B + C containing grain-boundary phases. Moreover, during prolong processing, abnormal grain growth occurs resulting in anisotropic -SiC phase formation. The Si-SiC materials are poor candidates for high-temperature applications due to the limit set by the melting point of silicon, and the limitations of hot pressing (HPSiC) as a densification technique are well known. SPSed SiC without sintering additive revealed inferior mechanical properties attributed to poor bonding between adjacent grains. In the present survey, an overview of the new developments in silicon carbide processing and properties will be presented together with the information on structure-properties correlationship. Information on the structure of the grain-boundary/secondary phases and interfaces until now was not comprehensively analyzed.

Info:

Periodical:

Edited by:

G.S. Upadhyaya

Pages:

71-89

Citation:

K. Biswas, "Solid State Sintering of SiC-Ceramics", Materials Science Forum, Vol. 624, pp. 71-89, 2009

Online since:

June 2009

Authors:

Export:

Price:

$41.00

[1] A. H. Cowless, E. H. Cowless, U. S. Patent No. 319. 945, (1885).

[2] E. G. Acheson, British Patent No. 17. 911, (1892).

[3] N. P. Padture, J. Am. Ceram. Soc., 77 (1994) 519-523.

[4] M. A. Mulla, V. D. Kristic, Acta. Metall. Mater., 42 (1994) 303.

[5] S. K. Lee, D. K. Kim, C. K. Kim, J. Am. Ceram. Soc., 78 (1995) 65.

[6] Y. W. Kim, M. Mitomo, H. Hirotsuru, J. Am. Ceram. Soc., 80 (1997) 99.

[7] C. Greskovich, J. H. Rosolowski, J. Am. Ceram. Soc., 59 (1976) 336.

[8] S. Prochazka, Mass Transport Phenomena in Ceramics, ed. A. R. Cooper and A. H. Heuer, Vol. 9, Plenum Press, New York (1975) p.421.

[9] H. Hausner, Energy and Ceramics, Mater. Sci. Monographs, Vol. 6, ed. P. Vincenzini, Elsevier Scientific Publ. Co., Amsterdam (1980) p.582.

[10] D. H. Stutz, S. Prochazka, J. Lorenz, J. Am. Ceram. Soc., 68 (1985) 479-482.

[11] R. A. Alliegro, L. B. Coffin, J. R. Tinklepaugh, J. Am. Ceram. Soc., 39 (1956) 386.

[12] P. Popper, In Special Ceramics, Proc. 1st Conf. Br. Ceram. Res. Assoc., 1960, p.209.

[13] P. Popper, D. G. S. Davis, Powder Metall., 8 (1961) 113.

[14] N. L. Hecht, D. E. McCullum, G. A. Graves, Ceram. Eng. Sci. Proc., 9 (1988) 1313-1332.

[15] D. E. McCullum, N. L. Hecht, L. Chuck, S. M. Goodrich, Ceram. Eng. Sci. Proc. 12 (1991) 1886-(1913).

[16] P. L. Farnsworth, R. L. Coble, J. Am. Ceram. Soc., 49 (1966) 264.

[17] T. L. Francis, R. L. Coble, J. Am. Ceram. Soc., 51 (1968) 115.

[18] H. Tanaka, Silicon Carbide Ceramics, Vol. 1, ed. S. Sōmiya and Y. Inomata, Elsevier, Barking, U.K. (1991) pp.213-236.

[19] K. Yamada, M. Mohri, Silicon Carbide Ceramics, Vol. 1, ed. S. Sōmiya and Y. Inomata, Elsevier, Barking, U.K. (1991) p.13.

[20] L. S. Ramsdell, Am. Mineral., 32 (1947) 64.

[21] H. Ott, Z. Kristallogr., 61 (1925) 515.

[22] H. Ott, ibid., 62 (1925) 201.

[23] H. Ott, ibid., 63 (1926) 1.

[24] H. Ott, Probleme der Moderne Physik, 63 (1926) 1.

[25] G. R. Zhadanov. Compte Rende Acad. Sci. URSS, 48 (1945) 39-42.

[26] H. Jagodzinski, Acta Crystallog., 2 (1949) 201-207.

[27] W. F. Knippenberg, Philips Research Reports, 18 (1963) 161.

[28] A. R. Verma, P. Krishna, Polymorphism and polytypism in Crystals. Wiley, New York, (1966).

[29] Y. Inomata, A. Inona, M. Mitomo, H. Sudzuki, Yogyo-Kyokai-Shi, 76 (1968) 313-319.

[30] D. J. Smith, N. W. Jepps, T. F. Page. J. Microsc., 144 (1978) 1-18.

[31] N. W. Jepps, Ph.D. Thesis, University of Cambridge, (1979).

[32] C. B. Carter, M. G. Norton, eds. Ceramic Materials Science and Engineering, Springer, NY, USA, (2007), p.97.

[33] R. Riedel, ed, Handbook of Ceramic Hard Materials, 1st ed., Wiley-VCH, Weinheim (2000) vol. 2, pp.683-748.

[34] T. Tagai, S. Sueno, R. Sadanaga, Mineral J., 6 (1971) 240.

[35] F. C. Frank, Phil. Mag., 42 (1951) 1014-1021.

[36] S. Amelinckx, Nature, 168 (1951) 431.

[37] Y. Inomata, Z. Inoue, M. Mitomo, H. Suzuki, Yogyo- Kyokai-Shi, 76 (1968) 313-319.

[38] D. Lundquist, Acta. Chem. Scand., 2 (1948) 177-191.

[39] P. T. B. Shaffer, Mater. Res. Bull., 4 (1969) S13-24.

[40] M. Mitomo, Y. Inomata, M. Kumanomido, Yogyo-Kyokai-Shi, 78 (1970) 365-369.

[41] M. Mitomo, Y. Inomata, H. Tanaka, Mater. Res. Bull., 6 (1971) 759-764.

[42] R. Kieffer, E. Gugel, P. Ettmeyer, A. Schmidt, Ber. Dtsch. Keram. Ges., 43 (1966) 621-623.

[43] M. M. Patience, Silicon Carbide Alloys, PhD Thesis, University of Newcastle upon Tyne, U. K., (1983).

[44] S. Prochazka, General Electric R&D Center, Schenectady, USA, Technical Information Series, Class 1, GECI Program 89CRD025, (1987).

[45] D. Foster, Densification of Silicon Carbide with Mixed Oxide Additives, PhD Thesis, University of Newcastle upon Tyne, (1996).

[46] Y. Inomata, J. Ceram. Soc. Jpn., 90 (1982) 527-537.

[47] J. E. Lane, C. H. Carter Jr., R. F. Davis, J. Am. Ceram. Soc., 71 (1988) 281.

[48] J. D. Hong, Self-Diffusion in Alpha and Beta Silicon Carbide, Proc. of the 4th Int. Meeting on Modern Ceramics, Mater. Sci. Monogr, 6, Energy and Ceramics, P. Vincenzini (Ed. ), Elsevier, Amsterdam (1980).

[49] J. Drowart, G. De Maria, M. G. Ingram, J. Chem. Phys., 41 (1958) 1015.

[50] E. Ermer, P. Wiesław, S. Ludosław, Solid State Ionics, 141-142 (2001) 523-528.

[51] K. Kaneko, M. Yoshiya, I. Tanaka, A. S. Tsurekawa, Acta Mater., 47 (1999) 1281-1287.

[52] S. Shinozaki, J. Haugas, W. T. Donlon, R. M. Williams, B. N. Juterbock, Advanced Ceramics II, ed. S. Sōmiya, Elsevier Applied Science, London (1988) p.7.

[53] W. Bröcker, H. Hausner, Powder Metall. Int., 10 (1978) 87-89.

[54] S. Prochazka, Sintering of Silicon Carbide, in Ceramics for High Performance Applications, eds. J. J. Burke et al., Metals and Ceramic Info. Center, Columbus, OH, 1974, pp.239-252.

[55] J. A. Coppola, G. H. Mc Murty, Nat. Symp. on Ceramics in the Service of Man, Carnegie Institution, Washington D.C., (1976).

[56] P. T. B. Shaffer, Mater. Res. Bull., 4 (1969) 213 - 220.

[57] Y. Murata, R. H. Smoak, in Proc. Int. Symp. Densification and Sintering, Oct, 1978, Hakone/Japan, Somiya, S. and Saito, S. eds, Gakujutsu Bunken, Tukya-Kai, Tokyo, 1979, pp.382-399.

[58] T. Fetahagic, D. Kolar, Ceram. Acta, 2 (1990) 31 - 37.

[59] S. Prochazka, in: P. Popper, Ed., Special Ceramic, vol. 6, 1975, pp.171-182, England.

[60] S. Prochazka, R. M. Scanlan, J. Am. Ceram. Soc. 58 (1975) 72.

[61] S. Suzuki, T. Hase, J. Am. Ceram. Soc., 63 (1980) 349-350.

[62] K. L. More, C. H. Carter, J. Bentley, W. H. Waldin, J. Am. Ceram. Soc., 69 (1988) 695-698.

[63] H. Gu, Y. Shinoda, J. Am. Ceram. Soc., 82 (1999) 469-472.

[64] A. Gubernat, L. Stobierski, Inżynieria materiałowa, 2 (2000) 76-78.

[65] L. Stobierski, A. Gubernat, Ceram. Int., 29 (2003) 355-361.

[66] W. J. Clegg, J. Am. Ceram. Soc., 83 (2000) 1039-1043.

[67] L. Stobierski, A. Gubernat, Ceram. Int., 29 (2003) 287-292.

[68] R. Hamminger, J. Am. Ceram. Soc., 72 (1989) 1741-1744.

[69] K. A. Schwetz, A. Lipp, Science of Ceramics 10, H. Hausner (Ed. ), Verlag Deutsche Keramische Ges., Berchtesgarten, Germany, 1980, pp.149-158.

[70] K. Suzuki, in SiC Ceramics, vol. 2, eds. S. Somiya, Y. Inomata, Elsevier, London, 1991, pp.163-182.

[71] W. Bröcker, H. Landfermann, H. Hausner, Powder Metall. Int., 11 (1979) 83.

[72] R. H. Smoak, DE-OS 27 51 851, (1977).

[73] D. Chen, C. J. Gilbert, X. F. Zhang, R.O. Ritchie, Acta Mater., 48 (2000) 659-674.

[74] X. F. Zhang, Q. Yang, L. C. De Jonghe, Acta Mater., 51 (2003) 3849-3860.

[75] R. Yuan, J. J. Kruzic, X. F. Zhang, L. C. De Jonghe, R. O. Ritchie, Acta Mater., 51 (2003) 6477-6491.

[76] K. Kaneko, M. Kawasaki, T. Nagano, N. Tamari, S. Tsurekawa, Acta Mater., 48 (2000) 903910.

[77] D. Chen, M. E. Sixta, X. F. Zhang, L. C. De Jonghe, R.O. Ritchie, Acta Mater., 48 (2000) 4599 - 4608.

[78] J. D. Hong, R. F. Davis, J. Am. Ceram. Soc., 63 (1980) 546.

[79] W. S. Seo, C. H., Pai, K. Koumoto, H. Yanagita, Japan. J. Ceram. Soc., 99 (1991) 443.

[80] J. J. Cao, W. J. MoberlyChan, L. C. De Jonghe, C. J. Gilbert, R. O. Ritchie, J. Am. Ceram. Soc., 79 (1996), 461.

[81] T. Kinoshita, S. Munekawa, S. -I. Tanaka, Acta Mater., 45 (1997) 801-809.

[82] W. J. Moberlychan, L. C. De Jonghe, Acta Mater., 46 (1998) 2411-2411.

[83] X. F. Zhang, M. E. Sixta, L. C. De Jonghe, J. Am. Ceram. Soc., 83 (2000) 2813.

[84] Y. Shinoda, T. Nagano, H. Gu, F. Wakai, J. Am. Ceram. Soc., 82 (1999) 2916.

[85] M. Backhaus-Ricoult, N. Mozdzierz, P. Eveno, J. Phys. III (France) 3 (1993) 2189.

[86] T. Nagano, K. Kaneko, G.D. Zhan, M. Mitomo, Y.W. Kim, J. Eur. Ceram. Soc., 22 (2002) 263.

[87] Y. Shinoda, M. Yoshida, T. Akatsu, F. Wakai, J. Am. Ceram. Soc., 87 (2004) (1919).

[88] S. Ohtsuka, Y. Shinoda, T. Akatsu, F. Wakai, J. Am. Ceram. Soc., 88 (2005) 1558.

[89] S. Prochazka, R. J. Charies, Am. Ceram. Soc. Bull., 52 (1973) 885.

[90] J. W. Edington, D. J. Rowcliffe, J. L. Hawshall, Powder Met. Int., 7 (1975) 82.

[91] J. W. Edington, D. J. Rowcliff, J. L. Hawshall, Powder Met. Int., 7 (1975) 136.

[92] S. Dutta, J. Mater. Sci., 19 (1984) 1307.

[93] S. Dutta, J. Am. Ceram. Soc., 68 (1985) C-269.

[94] G. Grathwohl, R. Hamminger, H. Iwanek, F. Thümmler, Science of Ceramics, Vol. 12, ed. P. Vincenzini, Ceramurgica s. r. 1., Faenza, Italy (1984) p.583.

[95] R. Hamminger, G. Grathwohl, F. Thlimmler, J. Mater. Sci. 18 (1983) 3154-3160.

[96] K. Suzuki, Bull. Ceram. Soc. Japan, 21 (1986) 590.

[97] J. L. Huang, A. C. Hurford, S. L. Bruner, R. A. Cutler, A. V. Virkar, J. Mater. Sci., 21 (1986) 1448-1456.

[98] T. B. Jackson, A.C. Hurford, S. L. Bruner, R. A. Cutler, SiC-Based Ceramics with Improved Strength,: in Silicon Carbide, Eds., J. W. Cawley and C. E. Semler, Am. Ceram. Soc., Westerville, OH, (1988) pp.227-240.

[99] J. Y. Kim, Y. W. Kim, Commun. Am. Ceram. Soc., 82 (1999) 441-444.

[100] Z. R. Huang, C. Zhao, S. H. Tan, J. Inorg. Mater., 14 (1999) 726-731.

[101] Y. W. Kim, K. Ando, M. C. Chu, J. Am. Ceram. Soc., 86 (2003) 465.

[102] S. Guo, N. Hirosaki, H. Tanaka, Y. Yamamoto, T. Nishimura, J. Eur. Ceram. Soc., 23 (2003) (2023).

[103] K. Strecker, S. Ribeiro, R. Obseracker, M. J. Hoffmann, Int. J. Ref. Met. Hard Mater., 22 (2004) 169.

[104] T. Tokiyama, Y. Shinoda, T. Akatsu, F. Wakai, Mater. Sci. Eng., B148 (2008) 261.

[105] T. Yamamoto, H. Kitaura, Y. Kodera, T. Ishii, M. Ohyanagi, Z. A. Munir, J. Am. Ceram. Soc., 87 (2004) 1436.

[106] T. Yamamoto, T. Ishii, Y. Kodera, H. Kitaura, M. Ohyanagi, Z. A. Munir, J. Ceram. Soc. Jpn., 112 (2004) 940.

[107] M. Ohyanagi, T. Yamamoto, H. Kitaura, Y. Kodera, T. Ishii, Z. A. Munir, Scripta Mater., 50 (2004) 111.

[108] T. Yamamoto, T. Kondou, Y. Kodera, T. Ishii, M. Ohyanagi, Z. A. Munir, J. Mater. Eng. Perform., 14 (2005) 460.

[109] Y. Kodera, N. Toyofuku, T. Yamamoto, M. Ohyanagi, Z. A. Munir, Ceram. Trans., 194 (2006) 143.

[110] Y. Kodera, H. Kotera, T. Yamamoto, M. Ohyanagi, Z. A. Munir, Phys. Stat. Sol., C3 (2006) 2876.

[111] F. Guillard, A. Allemand, J. D. Lulewicz, J. Galy, J. Eur. Ceram. Soc., 27 (2007) 2725.