Functionally Graded Thermal Barrier Coatings with Improved Reflectivity and High-Temperature Capability

Abstract:

Article Preview

Conventional thermal barrier coating (TBC) systems consist of a duplex structure with a metallic bondcoat and a ceramic, heat isolative topcoat. In modern TBCs the ceramic topcoat is further divided into layers with different functions. One example is the double layer system in which conventional yttria stabilized zirconia (YSZ) is used as bottom and new materials as pyrochlores or perovskites are used as topcoat layers. These systems demonstrated an improved temperature capability compared to standard YSZ. Examples of such systems will be shown. In modern gas turbines the increased temperatures and gas pressures lead to an increased fraction of radiative heat flow. Coatings with increased reflectivity can be used to avoid the direct heating of the metallic substrates by this radiation. An effective method to produce such coatings is suspension plasma spraying. These reflective coatings are deposited on top of the TBC system and will lead to a further grading and improved performance of the coating.

Info:

Periodical:

Materials Science Forum (Volumes 631-632)

Edited by:

Akira Kawasaki, Akinaga Kumakawa and Masayuki Niino

Pages:

73-78

DOI:

10.4028/www.scientific.net/MSF.631-632.73

Citation:

R. Vaßen et al., "Functionally Graded Thermal Barrier Coatings with Improved Reflectivity and High-Temperature Capability", Materials Science Forum, Vols. 631-632, pp. 73-78, 2010

Online since:

October 2009

Export:

[1] J.H. Kim , M.C. Kim and C.G. Park: Surf. Coat. Technol. Vol. 168 (2003), pp.275-280.

[2] R. Vaßen, F. Traeger and D. Stöver: Int. J. Appl. Ceram. Technol. Vol. 1.

[4] (2004), pp.351-61.

[3] X.Q. Cao, R. Vassen, F. Tietz and D. Stoever: J. Euro. Ceram. Soc. Vol. 26 (2006), pp.247-251.

[4] S. Rangaraj and K. Kokini: Acta Mater. Vol. 51 (2003), pp.251-267.

[5] W. Ma, M. O. Jarligo, D. E. Mack, D. Pitzer, J. Malzbender, R. Vaßen and D. Stöver: submitted to the Journal of Thermal Spray Technologies (2008).

[6] R. Vassen, X. Cao, F. Tietz; Basu and D. Stöver: J. Am. Ceram. Soc. Vol. 83 (1999) pp.2023-28.

[7] R. Vaßen, G. Pracht and D. Stöver: in Proceedings of the 2002 International Thermal Spray Conference.

[8] R. Vaßen, G. Barbezat and D. Stöver, in: Materials for Advanced Power Engineering, edited by J. Lecomte-Becker, M. Carton, F. Schubert, P.J. Ennis, (2002).

[9] R. Vaßen, X.Q. Cao and D. Stöver: in Ceramic Engineering and Science Proceedings, (2001).

[10] C. M. Spuckler: in Proceedings of the 28th International Cocoa Beach Conference and Exposition on Advanced Ceramics and Composites, (2008).

[11] V. Debout, F. Enguehard, A. Meillot, P. Abélard, E. Bruneton and P. Fauchais: in Proceedings of the 2006 International Thermal Spray Conference.

[12] J.I. Eldridge, C.M. Spuckler, K.W. Street, J.R. Markham: Ceram. Eng. Sci. Proc. Vol. 23(2002), pp.7417-429.

[13] A. Stuke, R. Carius, J. -L. Marquéz, G Mauer, M. Schulte, D. Sebold, R. Vaßen and D. Stöver: 31st International Cocoa Beach Conference and Exposition on Advanced Ceramics and Composites, Ceramic Engineering Science Proceeding (2007).

[14] H. Kaßner, A. Stuke, R. Vaßen and D. Stöver: in Proceedings of the 2008 International Thermal Spray Conference.

[15] A. Stuke, H. Kaßner, J. -L. Marqués, R. Carius, R. Vaßen and D. Stöver: submitted to the International Journal of Applied Ceramics Technology (2008).

[16] H. Kassner, R. Siegert, D. Hathiramani, R. Vaßen and D. Stöver: J. Therm. Spray Technol. Vol. 17 (2008), p.115.

[17] F. Traeger, R. Vassen, K-H. Rauwald and D. Stöver: Adv. Eng. Mater. Vol. 5 (2003), pp.429-33.

[18] F. Traeger, M. Ahrens, R. Vaßen, D. Stöver: Mater. Sci. Eng. A. Vol. 358 (2003), pp.255-65.

[19] R. Vaßen, F. Traeger and D. Stöver: Proceedings of the 2003 International Thermal Spray Conference, pp.1573-1582.

In order to see related information, you need to Login.