Development of Novel Functionally Graded Al2O3-Lanthanum Hexaaluminate Ceramics for Thermal Barrier Coatings

Abstract:

Article Preview

Lanthanum hexaaluminate (LHA) has superior thermo-chemical stability at temperatures higher than 1000 °C and is a promising competitor to Y-ZrO2-based thermal barrier coatings (TBCs). The yet unresolved problem is control of microstructure of high LHA content ceramics and adjustment of porosity upon, to arrive at a material exhibiting low thermal conductivity at high temperature combined with structural reliability. Therefore, a functionally graded alumina/lanthanum hexaaluminate (FGLHA) with a gradient in composition was developed. The thermal diffusivity and thermal conductivity of FGLHA were compared with the one of the monolithic composite ceramics. The alumina-rich composites showed excellent mechanical properties whereas the LHA-rich composites presented lower thermal conductivity.

Info:

Periodical:

Materials Science Forum (Volumes 631-632)

Edited by:

Akira Kawasaki, Akinaga Kumakawa and Masayuki Niino

Pages:

97-102

Citation:

Z. Negahdari et al., "Development of Novel Functionally Graded Al2O3-Lanthanum Hexaaluminate Ceramics for Thermal Barrier Coatings", Materials Science Forum, Vols. 631-632, pp. 97-102, 2010

Online since:

October 2009

Export:

Price:

$41.00

[1] D.R. Clarke and C.G. Levi: Annu. Rev. Mater. Res. Vol. 33(2003), p.383.

[2] R.L. Jones: Journal of Thermal Spray Technology Vol. 6.

[1] (1997), p.77.

[3] S. Krämer, J. Yang, C. G. Levi, and C. A. Johnson: J. Am. Ceram. Soc. Vol. 89.

[10] (2006), p.3167.

[4] A. Azzopardi, R. Me´vrel, B. S. Ramond, E. Olson, and K. Stiller: Surface and Coatings Technology Vol. 177 -178 (2004), p.131.

[5] R. Gadow and M. Lischka: Surf. Coat. Technol. Vol. 151 -152 (2002), p.392.

[6] M. K. Cinibulk: J. Mater. Sci. Lett. Vol. 14 (1995), p.651.

[7] K. An, K. S. Ravichandran, R. E. Dutton, and S. L. Semiatin: J. Am. Ceram. Soc. Vol. 82.

[2] (1999), p.399.

[8] K. Shinzato and T. Baba: Journal of Thermal Analysis and Calorimetry Vol. 64.

[1] (2001), p.413.

[9] W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott: J. Appl. Phys. Vol. 32.

[9] (1961), 1679-84.

[10] R. A. Swalin: Thermodynamics of Solids, (New York: John Wiley 1962).

[11] Y. S. Touloukian and F. H. Buyco: Thermophysical Properties of Matter, the TPRC Data Series Vol. 5, Specific Heat Nonmetallic Solids ( IFI/Plenum New York, Washington 1970).

DOI: https://doi.org/10.1007/978-1-4757-6554-0_6

[12] P. Wu and A.D. Pelton: J. Alloys and Compounds Vol. 179[1-2] (1992), p.259.

[13] J. Sun: Int. J. Appl. Ceram. Technol. Vol. 4.

[1] (2007), p.75.

[14] W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics, 2nd Edition (John Wiley and Sons, New York, 1976).

[15] D. S. Smith, S. Fayette, S. Grandjean, C. Martin, R. Telle, and T. Tonnessen: J. Am. Ceram. Soc. Vol. 86.

[1] (2003), p.105.

[16] O. J. Lee, K. H. Lee, T. J. Yim, S. Y. Kim, and K. P. Yoo: J. Non-Crystalline Solids Vol. 298 (2002), p.287.