A New Constitutive Model for Work Hardening Based on Gain Boundary Energy Density


Article Preview

Recently, the necessity to grade grain size to ultrafine and nano scale for understanding the mechanical behavior of these materials has been recognized. However, the nature of such classification has remained unclear. As an example, ultrafine (100 nm -1 μm) and nano (<100 nm) grained FCC metals, compared to their coarse grained counterparts, exhibit a grain size strengthening that may deviate from the Hall-Petch relationship. To explain the mechanism of such deviation, previous dislocation theories seem insufficient. To solve this problem, a critical grain size criterion governing the shift of deformation mechanism is proposed in this work. This model employs an energetic approach; it relates the grain boundary energy density to certain critical energy values; and it permits, for the first time, a quantitative grading of grain sizes. Predictions based on this model were evaluated. The prediction on copper polycrystals of various grain sizes showed a very good agreement with experimental results. It is thus wished that the grain size theory on plastic deformation mechanism could be unified with the dislocation theory. In this study, such unification is attempted by using a parameter defined as the defect energy density. The possibility of such generalization is further reasoned upon the fact that the defect energy approach should be a unique but common form applicable for both dislocations and grain boundaries.



Materials Science Forum (Volumes 633-634)

Edited by:

Yonghao Zhao and Xiaozhou Liao




J. Luo and Z. R. Wang, "A New Constitutive Model for Work Hardening Based on Gain Boundary Energy Density", Materials Science Forum, Vols. 633-634, pp. 249-259, 2010

Online since:

November 2009





[1] S. Cheng, E. Ma, YM. Wang. et al.: Acta Mater. Vol. 53 (2005), p.1521.

[2] MF. Ashby: Acta Metall. Vol. 20 (1972), p.887.

[3] E. Romhanji, V. Milenkovic and D. Drobnjak: Z. Metall. Vol. 83 (1992), p.110.

[4] UF. Kocks and H. Mecking: Prog. Mater. Sci.: Vol. 48 (2003), p.171.

[5] FRN. Nabarro, ZS Basinski and DB Holt: Advan. Phys. Vol. 13(50) (1964), p.193.

[6] UF. Kocks, HS Chen, DA. Rigney and RJ. Schaefer, in: Work hardening, edited by JP Hirth and J. Weertman, Gordon and Beach Science Publishers (1968).

[7] H. Steffen, G. Gottstein and T. Wollenberger: Acta Metall. Vol. 21 (1973), p.683.

[8] H. Mecking, Strength Met. Alloys, Proc. Int. Conf., 5th, 1980, Meeting Date 1979, Vol. 3 p.1573.

[9] D. Kuhlman-Wilsdorf, in: Work hardening, edited by JP Hirth and J. Weertman, Gordon and Beach Science Publishers (1968).

[10] H. Hildebrand: Physica Status Solidi A Vol. 12 (1972), p.239.

[11] F. Szekely, I. Groma and J. Lendvai: Scripta Mater. Vol. 45 (2001), p.55.

[12] M. Mueller, M. Zehetbauer, A. Borbely and T. Ungar: Scripta Mater. Vol. 35 (1996), p.1461.

[13] J. Diehl: Z. Metall. Vol. 47 (1956), p.331.

[14] X. Huang and N. Hansen: Mater. Sci. Eng. A Vol. 387-389 (2004), p.186.

[15] J. Luo and Z. Wang, in: Proceedings of the 10th International Symposium on Plasticity and Its Current Applications, edited by A.S. Kahn, R. Kazmi and J. Zhou, Neat Press (2003).

[16] R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov and B. Baudelet: Acta Metall. et Mater. Vol. 42 (1994), p.2467.

DOI: https://doi.org/10.1016/0956-7151(94)90326-3

[17] M.D. Merz and S.D. Dahlgren, J. Appl. Phys. Vol. 46 (1975), p.3235.

[18] J. Luo, Z. Mei, W.H. Tian and Z. Wang: Mater. Sci. Eng. A Vol. 441 (2006), p.282.

[19] T.H. Courtney: Mechanical Behavior of Materials (McGraw Hill, Boston-Toronto 2000).

[20] F.R.N. Nabarro: Theory of Crystal Dislocations (Clearendon Press, Oxford 1967).

[21] H. Kronmueller and M. Wilkens: Scripta Metall. Vol. 3 (1969), p.495.

[22] G. Mohamed and B. Bacroix: Acta Mater. Vol. 48 (2000), p.3295.

[23] E.E. Underwood: Quantitative Stereology (Addison-Welsley Publishing Company, Menlo Park•California•London•Don Mills, Ontario 1970).

[24] J.P. Hirth and J. Lothe: Theory of Dislocations (McGraw-Hill, Inc., New York, St. Louise, San Francisco, Toronto, London, Sydney 1968).

[25] W. Staubwasser: Acta Met. Vol. 7 (1959), p.43.

[26] S.V. Tsivinskii: Physica Status Solidi A Vol. 81 (1984), p.299.

[27] K. Kamada and B.K. Tanner: Philosophical Magazine Vol. 29 (1974), p.309.

[28] R.S. Davis, R.L. Fleischer, J.D. Livingston and B. Chalmers: JOM Vol. 9 (1957), p.136.

[29] R. Najafabadi and S. Yip: Scripta Met. Vol. 18 (1984), p.159.

[30] C. Rey and A. Zaoui: Acta Met. Vol. 28 (1980), p.687.

[31] C. Rey and A. Zaoui: Acta Met. Vol. 30 (1982), p.523.

[32] J.J. Hauser and B. Chalmers: Acta Met. Vol. 9 (1961), p.802.

[33] J.C. Swearengen and R. Taggart: Acta Met. Vol. 19 (1971) p.543.

[34] Y.M. Hu, Z.G. Wang and G.Y. Li: Mater. Sci. Eng. A Vol. 208 (1996), p.260.

[35] P. Peralta, A. Schober and C. Laird: Mater. Sci. Eng. A Vol. 169 (1993), p.43.

[36] Y.M. Hu and Z.G. Wang: Scripta Mater. Vol. 35 (1996), p.1019.

[37] Z. Wang and H. Margolin: Metall. Trans. A Vol. 6 (1985), p.873.

[38] T.D. Lee and H. Margolin: Scripta Met. Vol. 11 (1977), p.713.

[39] T.D. Lee and H. Margolin: Metall. Trans. A Vol. 8 (1977), p.157.

[40] G. Faninger: Acta Physica Austriaca Vol. 27 (1968), p.122.

[41] S. Andiarwanto, H. Miura and T. Sakai: Mater. Trans. Vol. 44 (2003), p.2213.

[42] W. Jia, Z. Zhu, Z. Wang and S. Li: Journal of Materials Science & Technology (Shenyang, China) Vol. 18 (2002), p.108.

[43] S. Li, D. Ren, W. Jia, Z. Wang and Z. Peng, in: Fatigue '99, Proceedings of the Inter. Fatigue Congress, edited by X.R. Wu, Z.G. Wang, Higher Education Press, Beijing, Peop. Rep. China, (1999).

[44] D. Ren, S. Li and Z. Wang: Shenyang Gongye Xueyuan Xuebao Vol. 17 (1998), p.45.

[45] Y. Kaneko, N. Ishikawa, A. Vinogradov and K. Kitagawa: Scripta Mater. Vol. 38 (1998), p.1609.

[46] U.F. Kocks: JOM-J MET Vol. 16 (1964), p.752.

[47] A.W. Thompson: Acta Metall. Vol. 25 (1977), p.83.

[48] A.A. Pedos, A.S. Bai , M.I. Tsypin: Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya Vol. 1 (1979), p.115.

[49] U.F. Kocks: Metall. Trans. Vol. 1 (1970), p.1121.

[50] U.F. Kocks: Acta Met. Vol. 6 (1958), p.85.

[51] H. Mecking, U.F. Kocks and C.H. Hartig: Scripta Mater. Vol. 35 (1996), p.465.

[52] J.J. Gracio: Scripta Metall. Mater. Vol. 31 (1994), p.487.

[53] M.H. Schankula, D.J. Lloyd and J.D. Embury: Acta Metal. Vol. 18 (1970), p.1293.

[54] L.S. Toth: Com. Mater. Sci. Vol. 32 (2005), p.568.

[55] M.A. Meyers and E. Ashworth: Philosophical Magazine A Vol. 46 (1982), p.737.

[56] X. Feaugas and H. Haddou: Metall Mater Trans A Vol. 34 (2003), p.2329.

[57] M.H. Schankula, D.J. Lloyd and J.D. Embury, in: Int. Conf. Strength Metals Alloys, (Conf. Proc., 1970).

[58] H. Haddou, C. Gaudin and X. Feaugas: Journal de Physique IV Proceedings Vol. 11 (2001), p.283.

[59] X. Huang, A. Borrego and W. Pantleon: Mater. Sci. Eng. A Vol. 319-321 (2001), p.237.

[60] T. Tiainen and P.O. Kettunen: Scandinavian J. Met. Vol. 4 (1975), p.81.

[61] A.J. Beaudoin, A. Acharya, S.R. Chen, D.A. Korzekwa and M.G. Stout: Acta Mater. Vol. 48 (2000), p.3409.

[62] D. Kuhlmann-Wilsdorf: Philosophical Magazine A Vol. 79 (1999), p.955.

[63] R.W. Armstrong, in: Advances in Materials Research, edited by R.F. Bunshah, volume 5, Welley-Interscience (1971).

[64] Y.M. Wang, E. Ma, M.W. Chen: Appl. Phys. Lett. Vol. 80 (2002), p.2395.

[65] Y. Champion, C. Langlois, S. Guerin-Mailly, P. Langlois, J.L. Bonnentien, and M.J. Hytch: Science Vol. 300 (2003), p.310.

DOI: https://doi.org/10.1002/chin.200329011

[66] N. Wang, Z. Wang, K.T. Aust and U. Erb: Acta Metall. Mater. Vol. 43 (1995), p.519.

[67] N. Wang, Z. Wang, K.T. Aust and U. Erb: Mater. Sci. Eng. A Vol. 237 (1997), p.150.

Fetching data from Crossref.
This may take some time to load.