High-Rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation


Article Preview

Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.



Materials Science Forum (Volumes 633-634)

Edited by:

Yonghao Zhao and Xiaozhou Liao




R. E. Rudd "High-Rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation", Materials Science Forum, Vols. 633-634, pp. 3-19, 2010

Online since:

November 2009





[1] E.Q. Hall: Proc Soc London Vol. B64 (1951) pp.747-753; N.J. Petch: J Iron Steel Inst Vol. 174 (1953) pp.25-28.

[2] T.G. Nieh and J. Wadsworth: Scripta Met. Mater. Vol. 25 (1991) pp.955-958.

[3] J. Schiotz, F. D. DiTolla, and K.W. Jacobsen: Nature Vol. 391 (1998) pp.561-563.

[4] D. Wolf, V. Yamakov, S.R. Phillpot, and A.K. Mukherjee: Z. Metallkd Vol. 94 (2003) pp.1091-1097.

[5] S. Yip: Nature Vol. 391 (1998) pp.532-533.

[6] H. van Swygenhoven., M. Spaczer, A. Caro, and D. Farkas: Phys. Rev. B Vol. 60 (1999) pp.22-25.

[7] H. van Swygenhoven, P.M. Derlet, and A. Hasnaoui: Phys. Rev. B Vol. 66 (2002) p.024101.

[8] C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: MRS Bull. Vol. 24 (1999) pp.54-58.

[9] M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci. Vol. 51 (2006) pp.427-556.

[10] D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Acta Mater. Vol. 53 (2005) pp.1-40.

[11] Y.M. Wang, A.F. Jankowski, and A.V. Hamza: Scripta Mater. Vol. 57 (2007) pp.301-304.

[12] Y.M. Wang, A.M. Hodge, J. Biener, A.V. Hamza, D.E. Barnes, K. Liu, and T.G. Nieh: Appl. Phys. Lett. Vol. 86 (2005) p.101915.

[13] Y.M. Wang, A.M. Hodge, P.M. Bythrow, T.W. Barbee Jr., and A.V. Hamza: Appl. Phys. Lett. Vol. 89 (2006) p.081903.

[14] J. Edwards, K.T. Lorenz, B.A. Remington, S. Pollaine, J. Colvin, D. Braun, B.F. Lasinski, D. Reisman, J.M. McNaney, J.A. Greenough, R. Wallace, H. Louis, and D. Kalantar: Phys. Rev. Lett. Vol. 92 (2004) p.075002.

DOI: 10.1103/physrevlett.92.075002

[15] B.A. Remington et al.: Mater. Sci. Technol. Vol. 22, (2006) pp.474-488.

[16] R.F. Smith et al.: Phys. Rev. Lett. Vol. 98 (2007) p.065701.

[17] K.T. Lorenz, M.J. Edwards, A.F. Jankowski, S.M. Pollaine, R.F. Smith, B.A. Remington: High Energy Density Physics Vol. 2 (2006) pp.113-125.

DOI: 10.1016/j.hedp.2006.08.001

[18] D.B. Reisman, A. Toor, R.C. Cauble, C.A. Hall, J.R. Asay, M.D. Knudson, and M.D. Furnish: J. Appl. Phys. Vol. 89 (2001) pp.1625-1633.

[19] J. Eggert, M. Bastea, D. B. Reisman, S. Rothman, J. -P. Davis, M. D. Knudson, D. B. Hayes, G. T. Gray III, D. Erskine, and G. W. Collins: AIP Conf. Proc. Vol. 955 (2007) pp.1177-1180.

[20] D.K. Bradley et al.: Phys. Rev. Lett. Vol. 102 (2009), in press.

[21] M.A. Meyers: Dynamic Behavior of Materials (Wiley-Interscience, New York, 1994).

[22] B.E. Warren and B. L Averbach: J. Appl. Phys. Vol. 21 (1950) pp.595-599.

[23] Q. Johnson and A.C. Mitchell: Phys. Rev. Lett. Vol. 29 (1972) pp.1369-1371.

[24] Q. Johnson, A. Mitchell, and L. Evans: Nature Vol. 231 (1971) pp.310-311.

[25] P.A. Rigg and Y.M. Gupta: Phys. Rev. B Vol. 63 (2001) p.094112.

[26] K.G. Hoge and A.K. Mukhergee: J. Mater. Sci. Vol. 12 (1977) pp.1666-1672.

[27] S.R. Chen and G.T. Gray: Metall. Mater. Trans. A Vol. 27 (1996) pp.2994-3006.

[28] K.E. Duprey and R.J. Clifton in: Shock Compression of Condensed Matter, edited by S.C. Schmidt, D.P. Dandekar, and J.W. Forbes, American Institute of Physics, Melville, NY (1998) pp.475-478.

[29] D.J. Steinberg, S.G. Cochran, and M.W. Guinan: J Appl Phys Vol. 51 (1980) pp.1498-1504; D.J. Steinberg and C.M. Lund: J. Appl. Phys. Vol. 65 (1989) pp.1528-1533.

[30] F.J. Zerilli and R.W. Armstrong: J. Appl. Phys. Vol. 61 (1987) pp.1816-1825; F.J. Zerilli and R.W. Armstrong: J. Appl. Phys. Vol. 68 (1990) pp.1580-1591.

[31] G.R. Johnson and W.H. Cook, in: Proceedings of the 7th International Symposium on Ballistics, Den Haag, The Netherlands (1983) pp.541-543.

[32] D.L. Preston, D.L. Tonks, and D.C. Wallace: J. Appl. Phys. Vol. 93 (2003) pp.211-220.

[33] J.N. Johnson and W. Band: J. Appl. Phys. Vol. 38 (1967) pp.1578-1585.

[34] P.P. Gillis, K.G. Hoge, and R.J. Wasley: J. Appl. Phys. Vol. 42 (1971) pp.2145-2146.

[35] B.L. Holian and P.S. Lomdahl: Science Vol. 280 (1998) p.2085-(2088).

[36] E.M. Bringa, K. Rosolankova, R.E. Rudd, B.A. Remington, J.S. Wark, M. Duchaineau, D.H. Kalantar, and J. Belak: Nature Materials Vol. 5 (2006) pp.805-809.

DOI: 10.1038/nmat1735

[37] K. Kadau, T.C. Germann, P.S. Lomdahl, and B.L. Holian, Science Vol. 296, (2002) pp.1681-1684.

[38] E.M. Bringa, A. Caro, Y. Wang, M. Victoria, J.M. McNaney, B.A. Remington, R.F. Smith, B.R. Torralva, and H. van Swygenhoven: Science Vol. 309 (2005) pp.1838-1841.

[39] M. Finnis and J. Sinclair: Philos. Mag. A Vol. 50 (1984) pp.45-55.

[40] G.J. Ackland and R. Thetford: Philos. Mag. A Vol. 56 (1987) pp.15-30.

[41] J.A. Moriarty, J.F. Belak, R.E. Rudd, P. Soderlind, F.H. Streitz and L.H. Yang: J. Phys.: Condens. Matter Vol. 14 (2002) pp.2825-2857.

DOI: 10.1088/0953-8984/14/11/305

[42] We have compared a stress-strain curves for nanocrystalline Ta based on the Finnis-Sinclair and MGPT potentials, and they are qualitatively the same and quantitatively very similar under the conditions reported here, but the Finnis-Sinclair potential is much less expensive computationally.

[43] M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).

[44] R.E. Rudd and J.Q. Broughton: Phys. Stat. Sol. Vol. 217 (2000) pp.251-291.

[45] For information on the Livermore Computing supercomputers, see: http: /computing. llnl. gov.

[46] F.H. Streitz, J.N. Glosli, and M.V. Patel: Phys. Rev. Lett. Vol. 96 (2006) p.225701.

[47] F.H. Streitz, J.N. Glosli, M.V. Patel , B. Chan, R. Yates, B. de Supinski, J. Sexton, and J. Gunnels, in: Proceedings of IEEE/ACM Supercomputing '05.

[48] R.H. Doremus: Rates of Phase Transformations (Academic Press, New York, 1985).

[49] R.E. Rudd: Notes on the Strain-Rate Scaling of a Solidified Microstructure (LLNL Internal Report, October 2005).

[50] J.N. Glosli, F.H. Streitz, and D.H. Richards: private communication.

[51] R.E. Rudd and J.F. Belak: Comput. Mater. Sci. Vol. 24 (2002) pp.148-153.

[52] A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1996).

[53] J.D. Lindl et al.: Phys. Plasmas Vol. 11 (2004) pp.339-491.

[54] M. Parrinello and A. Rahman: J. Appl. Phys. Vol. 52 (1981) pp.7182-7190.

[55] H. Goldstein: Classical Mechanics (Addison-Wesley, Reading, MA 1980), 2nd ed.

[56] H. Grimmer: Acta Cryst. Vol. A30 (1974) pp.685-688.

[57] D.J. Evans: Mol. Phys. Vol. 34 (1977) pp.317-325.

[58] S.L. Adler: Phys. Rev. Lett. Vol. 55 (1985) pp.783-786.

[59] B.W. Reed, R.W. Minich, R.E. Rudd and M. Kumar: Acta Cryst. Vol. A60 (2004) pp.263-277.

[60] By construction, at a perfect lattice site nˆ is in the first octant (or in a small area outside bounded by the circle circumscribing.

[100] .

[10] and.

[1] , and 0< θ <54. 7º.

[61] A.J. Schwartz, M. Kumar, and D.P. Field: Electron Backscatter Diffraction in Materials Science (Springer-Verlag, Berlin, 2009).

[62] G.E. Dieter: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, Boston, 1986), Section 3. 4.

[63] D.C. Wallace: Thermodynamics of Crystals (Dover, Mineola, 1972).

[64] J.P. Hirth and J. Lothe: Theory of Dislocations (John Wiley and Sons, New York, 1992) 2nd ed.

[65] W. Voigt: Lehrbuch der Kristallphysik (Teubner, Berlin, 1910) p.962.

[66] A. Reuss: Z. Angew. Math. Mech. Vol. 9 (1929) pp.49-58.

[67] R. Hill: Proc. Phys. Soc., London, Sect. A Vol. 65 (1952) pp.349-354; D.H. Chung: Philos. Mag. Vol. 8 (1963) pp.833-841.

[68] A.V. Hershey: ASME J. Appl. Mech. Vol. 21 (1954) pp.236-240; H.M. Ledbetter: J. Appl. Phys. Vol. 44 (1973) pp.1451-1454.

[69] A.S. Argon: Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford, 2008).

[70] K.G. Hoge and A.K. Mukherjee: J. Mater. Sci. Vol. 12 (1977) pp.1666-1672.

[71] J.J. Gilman: J. Appl. Phys. Vol. 36 (1965) pp.2772-2777.

[72] S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty, Metall. Trans. A Vol. 28 (1997) p.17811795.

[73] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Nature Mater. Vol. 3 (2003) pp.43-47.

[74] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter: Acta Mater. Vol. 49 (2001) pp.2713-2722; V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Nature Mater. Vol. 1 (2002) pp.45-48.

DOI: 10.1016/s1359-6454(01)00167-7

[75] P.C. Millett, T. Desai, V. Yamakov, and D. Wolf: Acta Mater. Vol. 56 (2008) pp.3688-3698.

[76] A.M. Minor, S.A.S. Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O. L Warren: Nature Mater. Vol. 5 (2006) pp.697-702.

[77] G.T. Gray III and A.D. Rollett, In: High Strain Rate Behavior of Refractory Metals and Alloys, edited by R. Asfahani, E. Chen, and A. Crowson, TMS (1992).

[78] S. Cheng, J.A. Spencer, and W.W. Milligan: Acta Mater. Vol. 51 (2003) pp.4505-4518.

[79] Y.L. Bai and B. Dodd: Adiabatic Shear Localization: Occurrence, Theories and Applications (Pergamon, Oxford, 1992).

[80] M. Meyers, Y.J. Chen, F.D.S. Marquis, and D.S. Kim: Metall Mater Trans A Vol. 26 (1995) pp.2493-2501.

[81] R.E. Rudd and J.Q. Broughton: Phys. Rev. B Vol. 72 (2005) p.144104.

[82] C.E. Krill and R. Birringer: Philos. Mag. A Vol. 77 (1998) pp.621-640.

Fetching data from Crossref.
This may take some time to load.