Long-Range Ordering: An Approach to Synthesize Nanoscale Ni-Mo-Based Superlattices with High Strength and High Ductility


Article Preview

It is shown that long-range ordering in certain alloys based upon the Ni-Mo system can provide a viable means for synthesizing bulk nanoscale materials combing high strength and high ductility. Three alloys were included in the study with nominal chemical compositions of Ni-27Mo, Ni-27Mo-0.03B, and Ni-27Mo-12Cr all in weight %. Ordering was induced by thermal aging at 700 oC resulting in a D1a superlattice (Ni4Mo) in the Ni-27Mo and Ni-27Mo-0.03B alloys, and a Pt2Mo-type superlattice [Ni2(Cr,Mo)] in the Ni-27Mo-12Cr alloy. During the early stages of aging, atomic order in the Ni-27Mo alloy was completed homogeneously in the matrix resulting in a nanoscale superlattice with high strength and high ductility, however, a considerable loss of ductility occurred after extended aging. The results suggested that this behavior was not related to the degree of atomic order but rather to a change in morphology resulting from a heterogeneous ordering reaction at grain boundaries promoted by strain-induced recrystallization. Although a nanoscale superlattice combining high strength and high ductility could be synthesized in the Ni-27Mo alloy by proper aging treatment, it is demonstrated that the heterogeneous ordering reaction could be suppressed by the addition of boron or chromium to improve the thermal stability of the alloy system. On the average, a combination of about 800 MPa yield strength and 40% tensile elongation at room temperature could be achieved in the alloys studied. Deformation in the ordered state is found to occur by twinning, which has been related to the crystallography of the disorder-order transformation.



Materials Science Forum (Volumes 633-634)

Edited by:

Yonghao Zhao and Xiaozhou Liao




H.M. Tawancy, "Long-Range Ordering: An Approach to Synthesize Nanoscale Ni-Mo-Based Superlattices with High Strength and High Ductility", Materials Science Forum, Vols. 633-634, pp. 421-435, 2010

Online since:

November 2009





[1] E. Bitzek, C. Brandl, P. M. Derlet, and H. van Swygenhoven: Phys. Rev. Lett., vol. 100(23) (2008), Article No. 235501.

[2] H. Van Swygenhoven and J. R. Weertman: Mater. Today, vol. 9(5), (2006), p.24.

[3] Y.T. Zhu, X. Z. Liao: Nat. Mater., vol. 3 (2004), p.351.

[4] Z. Budrovic, H. van Swygenhoven, P. M. Derlet, S. Petegem, and B. Schmitt: Science, vol. 304 (2004), p.273.

[5] C. C. Koch: Scripta Mater., vol. 49 (2003), p.657.

[6] H. van Swygenhoven and J. R. Weertman: Scripta Mater. vol. 49 (2003), p.625.

[7] D. Jia, Y. M. Wang, K. T. Ramesh, E. Ma, Y. T. Zhu, and R. Z. Valiev: Appl. Phys. Lett. vol. 79 (2001), p.611.

[8] H van Swgenhoven, P. M. Derlet, and A. G. Froseth: Acta Mater. vol. 54(7) (2006), p. (1975).

[9] D. Farkas, A. Froseth, and H van Swygenhoven: Scripta Mater. vol. 55(8) (2006), p.695.

[10] A. G. Froseth, P. M. Derlet, and H van Swygenhoven: Scripta Mater. vol. 54(3) (2006), p.477.

[11] H van Swygenhoven: Mater. Sci. Forum vol. 447/448 (2004), p.3.

[12] X. Zhang, H. Wang, and C. C. Koch: Rev. Adv. Mater. Sci. vol. 6 (2006), p.53.

[13] H. Zhao, J. F. Bingert, X. Z. Liao, B. Z. Cui, K. Han, A. V. Sergueeva, A. K. Mukherjee, R. Z. Valiev, T. G. Langdon, and Y. T. Zhu: Adv. Meter. vol. 18 (2006), p.2949.

DOI: https://doi.org/10.1002/adma.200601472

[14] Y. H. Zhao, Y. T. Zhu, X. Z. Liao, Z. Horita, and T. G. Langdon: Appl. Phys. Lett. vol. 19 (2006), Article No. 121906.

[15] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu: J. Metals, vol. 58(4) (2006), p.33.

[16] R. Z. Valiev, I . V. Alexandrov, Y. T. Zhu, and T. C. Lowe: J. Mater. Res. , vol. 17(1) (2002), p.5.

[17] N. Hansen: Met. and Mater. Trans., vol. 32A(12) (2001), p.2917.

[18] R. Z. Valiev, R. K. Isiamgaliev, and I. V. Alexandrov: Prg. Mater. Sci., vol. 45 (2000), p.103.

[19] H. Gleiter: Acta Mater, vol. 48 (1) (2000), p.1.

[20] K. J. Kim, D. Y. Yang, and J. W. Yoon: Mater. Sci. Eng: vol. 485A(1/2) (2008), p.621.

[21] R. Manna, N. K. Makhopadhyay, and C. V. S. Sastry: Met. Mater. Trans.: 39A(7) (2008), p.1525.

[22] Z. Horit and T.G. Langdon, Scripta Mater: vol. 58(11) (2008) p.1029.

[23] M. L. Wang and A. D. Shan: J. Alloys and Compunds, vol. 455(1/2) (2008), p. L10-L14.

[24] Y. S. Li, N. R. Tao, and K. Lu: Acta Mater., vol. 56 (2) (2008), p.230.

[25] L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian, and K. Lu: Science, vol. 304(5669) (2004), p.422.

[26] J. Schiotz and K. W. Jacobsen: Science, vol. 301(5638) (2003), p.1357.

[27] E. M. Bringa, A. Caro, Y. M. Wang, M. Victoria, J. M. McNaney, B. A. Remington, R. F. Smith, B. R. Torralva, and H. Van Swygenhoven: Science, vol. 309 (5742) (2005), p.1838.

[28] K. Wang, N. R. Tao, G. Liu, J. Lu, and K. Lu: Acta Mater., vol. 54(19) (2006), p.5281.

[29] C. Huang, T. G. Murthy, and M. R. Shankar: Scripta. Mater., vol. 58(8) (2008), p.663.

[30] T. Roland, D. Retraint, K. Lu, and J. Lu: Mater. Sci. Eng., vol. 445A (2007), p.281.

[31] C. X. Huang, G. Yang, and B. Deng: Phil. Mag., vol. (87) (2007), p.4949.

[32] M. R. Shankar, M. R. Rao, and B. C. Chandrasekar: Scripta Mater., vol. 58(8) (2008), p.675.

[33] M. Liu, J. R. Hans, M. Murashkin, and R. Z. Valiev: Mater. Sci. Forum, vol. 579 (2008), p.147.

[34] C. Rentenberger, C. Mangler, and H. P. Karnthaler, Mater. Sci. Eng.: A, 387-389 (2004), pp.795-798.

[35] H. M. Tawancy and M. O. Aboelfotoh: Scripta Mater. vol. 59(8) (2008), p.846.

[36] H. M. Tawancy: Corrosion-Resistant Ni-Base Alloy, US patent pending (2008), US11/819, 750.

[37] M. F. Rothman and H. M. Tawancy: Low-Thermal Expansion Superalloy, (1988), US patent 4, 818, 486.

[38] A. Ayra, S. Banerjee, G. P. Das, I. Dasgupta, J. Saha, and T. Mookerjee: Acta Mater. vol. 49 (2001), p.3575.

[39] H. M. Tawancy: Met. Trans. vol. 22A (1992), p.1829.

[40] H. M. Tawancy: J. Mater. Sci. vol. 30 (1995), p.522.

[41] K. S. Chan, Y. M. Pan, and Y. Lee: Met. & Mater. Trans. vol. 37(7) (2006), p. (2039).

[42] S. Hata, S. Matsumrura, N. Kuwano, and K. Oki: Acta Mater. vol. 46 (3) (1998), p.881.

[43] J. E. Spruiell: J. Phys. and Chem. of Solids, vol. 26 (1965), p.811.

[44] P. R. Swan, in Electron Microscopy and Strength of Crystals, edited by G. Thomas and J. Washburn , Wiley, New York (1963), p.131.

[45] P. C. Clapp: Phys. Rev., vol. 171 (1968), p.754.

[46] P. C. Clapp: Phys. Rev., vol. 142 (1966), p.418.

[47] S. Moss: Phys. Rev., vol. 171 (1968), p.764.

[48] S. M. Allen: Acta Met., vol. 20 (1972), p.423.

[49] M. J. Richards: Acta Met., vol. 19 (1971), p.1263.

[50] H. M. Tawancy and N. N. Abbas: J. Meter. Sci. vol. 24 (1989), p.1845.

[51] L. E. Tanneer and H. J. Leamy, in Order-Disorder Transformation in Alloys, edited by H. Warlimont, Springer, New York (1974), p.180.

[52] D. B. Williams and E. Butler: Int. Met. Rev. vol. 26 (1981), p.153.

[53] C. T. Liu and J. O. Stiegler: Science vol. 226 (1984), p.168.

[54] H. M. Tawancy: Scripta Met. et. Mater. vol. 32(12) (1995), p. (2055).