Strategies for Improving Ductility of Cryomilled Nanostructured Titanium


Article Preview

The room temperature tensile behavior of commercially pure titanium (CP-Ti), cryomilled under different conditions and forged quasi-isostatically into bulk form, was studied in detail. The results demonstrate that the ductility of cryomilled titanium can be improved, and that the mechanical properties can be tailored using three specific strategies: the use of liquid argon as cryomilling media, introduction of coarse grained regions, and low temperature heat treatment. Cryomilling in a liquid argon environment, which differs from the widely used nitrogen cryogenic environment, was found to have a particularly strong influence on ductility, as it prevents nitrogen embrittlement. The contribution of coarse grains and heat treatment to ductility are also introduced and discussed using a comparative approach.



Materials Science Forum (Volumes 633-634)

Edited by:

Yonghao Zhao and Xiaozhou Liao




O. Ertörer et al., "Strategies for Improving Ductility of Cryomilled Nanostructured Titanium", Materials Science Forum, Vols. 633-634, pp. 459-469, 2010

Online since:

November 2009




[1] M.J. Donachie: Titanium, a technical guide, ASM International, Materials Park, OH, (2000).

[2] R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

[3] C.C. Koch: J. Mater. Sci. Vol. 42 (2007), p.1403.

[4] Y.T. Zhu and X.Z. Liao: Nature Mater. Vol. 3 (2004), p.351.

[5] J.R. Weertman, in: �anostructured materials; processing, properties and applications, edited by C.C. Koch William Andrews Publishing, Norwich, NY (2002), p.397.

[6] G.E. Dieter: Mechanical metallurgy, McGraw-Hill, New York, (1986).

[7] Z. Budrovic, H. Van Swygenhoven, P.M. Derlet, S. Van Petegem, and B. Schmitt: Science Vol. 304 (2004), p.273.

[8] E. Ma: JOM Vol. 58 (2006), p.49.

[9] A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Scripta Mater. Vol. 45 (2001), p.747.

[10] X.C. Zhao, W.J. Fu, X.R. Yang and T.G. Langdon: Scripta Mater. Vol. 59 (2008), p.542.

[11] O. Ertorer, A. Zuniga, T. Topping, W. Moss, and E.J. Lavernia: Metall. Mater. Trans. A Vol. 40A (2009), p.91.

[12] O. Ertorer, T. Topping, Y. Li, W. Moss and E.J. Lavernia: Scripta Mater. Vol. 60 (2009), p.586.

[13] R.Z. Valiev, A.V. Sergueeva and A.K. Mukherjee: Scripta Mater. Vol. 49 (2003), p.669.

[14] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer and Y.T. Zhu: JOM Vol. 58 (2006), p.33.

[15] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. A Vol. 303 (2001), p.82.

[16] V.L. Tellkamp, A. Melmed and E.J. Lavernia: Metall. Mater. Trans. A Vol. 32 (2001), p.2335.

[17] Y.M. Wang, M.W. Chen, F.H. Zhou and E. Ma: Nature Vol. 419 (2002), p.912.

[18] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu: Science Vol. 304 (2004), p.422.

[19] Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou and E.J. Lavernia: Appl. Phys. Lett. Vol. 92 (2008), p.081903.


[20] I.A. Ovid'ko and A.G. Sheinerman: Rev. Adv. Mater. Sci. Vol. 16 (2007), p.1.

[21] C. Suryanarayana: Prog. Mater. Sci. Vol. 46 (2001), p.1.

[22] D.B. Witkin and E.J. Lavernia: Prog. Mater. Sci. Vol. 51 (2006), p.1.

[23] H. Conrad: Prog. Mater. Sci. Vol. 26 (1981), p.123.

[24] T.L. Anderson: Fracture mechanics, fundamentals and applications, Taylor & Francis, Boca Raton, FL, (2005).

[25] W. Xu, X. Wu, D. Sadedin, G. Wellwood and K. Xia: Appl. Phys. Lett. Vol. 92 (2008), p.011924.

[26] F. S. Sun, A. Zuniga, P. Rojas and E.J. Lavernia: Metall. Mater. Trans. A Vol. 37A (2006), p. (2069).

[27] Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh and A. Hamza: Scripta Mater. Vol. 51 (2004), p.1023.

[28] Y.H. Zhao, Q. Zhan, T.D. Topping, Y. Li, W. Liu and E.J. Lavernia: submitted to Mater. Sci. Eng. A.

[29] J. Monk, B. Hyde and D. Farkas: J. Mater. Sci. Vol. 41 (2006), p.7741.

[30] M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci. Vol. 51 (2006), p.427.

[31] K.S. Kumar, H. Van Swygenhoven and S. Suresh: Acta Mater. Vol. 51 (2003), p.5743.

[32] T.H. Courtney: Mechanical behavior of materials, McGraw Hill, Boston, (2000).

[33] T.D. Shen and C.C. Koch: Nanostruct. Mater. Vol. 5 (1995), p.615.

[34] B.Q. Han, J.Y. Huang, Y.T. Zhu and E.J. Lavernia, Acta Mater. Vol. 54 (2006), p.3015.

[35] D. Witkin, Z. Lee, R. Rodriguez, S. Nutt and E.J. Lavernia, Scripta Mater. Vol. 49 (2003), p.297.

[36] Y.H. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y.T. Zhu, Y.Z. Zhou and E.J. Lavernia: Adv. Mater. Vol. 20 (2008), p.3028.


[37] I.A. Ovid'ko: Rev. Adv. Mater. Sci. Vol. 10 (2005), p.89.

[38] X.X. Huang, N. Hansen and N. Tsuji, Science Vol. 312 (2006), p.24.