Deformation Mechanisms of Single Crystals and Bicrystals Subjected to Equal-Channel Angular Pressing - Review

Abstract:

Article Preview

The deformation mechanisms of various kinds of single crystals and bicrystals during the process of equal channel angular pressing (ECAP) have been paid more attention world wide. This paper reviews the recent progresses in the understanding of the deformation mechanisms of single crystals and bicrystals subjected to one-pass ECAP, and discusses the effect of initial crystallographic orientation and grain boundary on the microstructural evolution of these crystals. Based on those experimental results and analysis, it is suggested that in addition to the shear deformation along the intersection plane (IP) of ECAP die, the shear along the normal of IP also plays an important role in affecting the microstructural evolution and deformation mechanisms of these single crystals and bicrystals.

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Edited by:

Yonghao Zhao and Xiaozhou Liao

Pages:

511-525

Citation:

W. Z. Han et al., "Deformation Mechanisms of Single Crystals and Bicrystals Subjected to Equal-Channel Angular Pressing - Review ", Materials Science Forum, Vols. 633-634, pp. 511-525, 2010

Online since:

November 2009

Export:

Price:

$38.00

[1] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov: Prog Mater Sci Vol. 45 (2000), p.103.

[2] R. Z. Valiev, T. G. Langdon: Prog Mater Sci Vol. 51 (2006), p.881.

[3] T. C. Lowe, R. Z. Valiev: Investigations and application of severe plastic deformation (Kluwer Academic Publishers, Dordrecht 2000). Table 1 The list of the GB parameters in the four Cu bicrystals before and after one-pass ECAP: θD: the initial angle between GB and ED; θF: the angle between GB and ED after ECAP; θR: the rotation angle of the GB; θP: the predicted angle between GB and ED according to the point view of materials flow; ∆θ: the difference between the predicted angle and the experimental observation.

[4] S. D. Wu, Q. Li, C. B. Jiang, G. Y. Li, Z. G. Wang: Acta Metall. Sin. Vol. 36 (2000), p.602.

[5] Z. G. Wang, S. D. Wu, C. B. Jiang, S. M. Liu, I. V. Alexandrov: Proceedings of the Eighth International Fatigue congress, Stockholm, Sweden, 2002, p.1541.

[6] H. Miyamoto, U. Erb, T. Koyama, T. Mimaki, A. Vinogradov, S. Hashimoto: Philos. Mag. Lett. Vol. 84 (2004), p.235.

[7] H. Miyamoto, J. Fushinmi, T. Mimaki, A. Vinogradov, S. Hashimoto: Mater. Sci. Eng. A Vol. 405 (2005), p.221.

[8] H. Miyamoto, U. Erb, T. Koyama, T. Mimaki, A. Vinogradov, S. Hashimoto: Mater. Sci. Forum Vol. 503-504 (2003), p.2795.

[9] H. Miyamoto, J. Fushimi, T. Mimaki, A. Vinogradov, S. Hashimoto: Mater. Sci. Forum 503-504 (2006), p.799.

[10] Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita, T. G. Langdon: Acta Mater. Vol. 52 (2004), p.1387.

[11] Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita, T. G. Langdon: Mater. Sci. Eng. A Vol. 420 (2006), p.79.

[12] Y. Fukuda, K. Oh-ishi, M. Furukawa, Z. Horita, T. G. Langdon: J Mater. Sci. Vol. 42 (2007), p.1501.

[13] M. Furukawa, Y. Miyahara, Z. Horita, T. G. Langdon: Mater. Sci. Eng. A Vol. 410-411 (2005), p.194.

[14] M. Furukawa, Z. Horita, T. G. Langdon: Mater. Sci. Forum Vol. 539-543 (2007), p.2853.

[15] M. Furukawa, Y. Fukuda, K. Oh-ishi, Z. Horita, T. G. Langdon: Mater. Sci. Forum Vol. 503504 (2006), p.113.

[16] M. Furukawa, Z. Horita, T. G. Langdon: Mater. Sci. Eng A Vol. 503 (2009), p.21.

[17] G. Wang, S.D. Wu, Q.W. Jiang, Y.D. Wang, Y.P. Zong, C. Esling, L. Zuo: Mater. Sci. Forum Vol. 495-407 (2005), p.815.

[18] G. Wang, S.D. Wu, L. Zuo, C. Esling, Z.G. Wang, G.Y. Li: Mater. Sci. Eng. A Vol. 346 (2003), p.83.

[19] T. Grosdidier, J.J. Fundenberger, D. Goran, E. Bouzy, S. Wuwas, W. Skrotzki, L.S. Toth: Scripta Mater. Vol. 59 (2008), p.1087.

[20] W.Z. Han, Z.F. Zhang, S.D. Wu, S.X. Li: Acta Mater. Vol. 55 (2007), p.5889.

[21] W.Z. Han, Z.F. Zhang, S.D. Wu, S.X. Li: Philoso. Mag. Vol. 88 (2008), p.3011.

[22] W.Z. Han, G.M. Cheng, S.X. Li, S.D. Wu, Z.F. Zhang: Phys. Rev. Lett. Vol. 101 (2008), p.115505.

[23] W.Z. Han, Z.F. Zhang, S.D. Wu, C.X. Huang, S.X. Li: Adv. Eng. Mater. Vol. 10 (2008) 1110.

[24] W.Z. Han, H.J. Yang, X. H. An, R.Q. Yang, S.X. Li, S.D. Wu, Z.F. Zhang: Acta Mater. Vol. 57 (2009), p.1132.

[25] W.Z. Han, S.D. Wu, S.X. Li, Z.F. Zhang: Appl. Phys. Lett. Vol. 92 (2008), p.221909.

[26] Q. Liu, N. Hansen: Phys. Stat. Soli. A Vol. 149 (1995), p.187.

[27] C.X. Huang, K. Wang, S.D. Wu, Z.F. Zhang, G.Y. Li, S.X. Li: Acta Mater. Vol. 54 (2006), p.655.

[28] M. Wrobel, S. Dymek, M. Blicharski: Scripta Mater. Vol. 35 (1996), p.417.

[29] S. Dymek, M. Wrobel: Mater. Chem. Phys. Vol. 81 (2003), p.552.

[30] G. D. Kohlhoff, A.S. Malin, K. Lucke, M. Hatherly: Acta Metall. Vol. 36 (1988), p.2841.

[31] J.B. Bilde-Sørensen, J. Schiøtz: Science Vol. 300 (2003), p.1244.

[32] G.T. Gray III: Acta Metall. Vol. 36 (1988), p.1745.

[33] G.T. Gray III, J.C. Huang: Mater. Sci. Eng. A Vol. 145 (1991), p.21.

[34] Z. F. Zhang, Z. G. Wang: Prog. Mater. Sci. Vol. 53 (2008), p.1025.

Fetching data from Crossref.
This may take some time to load.