Experimental Evidence that the Onset of Mechanical Softening in Nanocrystalline Metals is Strain Rate Dependent

Abstract:

Article Preview

This paper reports on the influence of strain rate on the onset of mechanical softening of nanocrystalline gold at room temperature. Micro-tensile testing was performed with applied strain rates on the order of 10−4 s−1 to 10−6 s−1. Our results defined a threshold strain rate, whereby plastic deformation at larger rates was dominated by dislocation processes and at smaller rates by one or more other deformation mechanisms.

Info:

Periodical:

Materials Science Forum (Volumes 633-634)

Edited by:

Yonghao Zhao and Xiaozhou Liao

Pages:

99-105

DOI:

10.4028/www.scientific.net/MSF.633-634.99

Citation:

L. W. Wang and B. C. Prorok, "Experimental Evidence that the Onset of Mechanical Softening in Nanocrystalline Metals is Strain Rate Dependent", Materials Science Forum, Vols. 633-634, pp. 99-105, 2010

Online since:

November 2009

Export:

Price:

$35.00

[1] R. Valiev: Nature Vol. 419 (2002), p.887.

[2] H. Gleiter: Acta Mater. Vol. 48 (2000), pp.1-29.

[3] E. O. Hall: Proc. Phys. Soc. London B Vol. 64 (1951), p.747.

[4] N. J. Petch: J. Iron Steel Inst. Vol. 174 (1953), p.25.

[5] M. F. Ashby: Phil. Mag. Vol. 21 (1970), p.399.

[6] A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: Scripta Mater. Vol. 23 (1989), pp.1679-1683.

[7] G. Palumbo, U. Erb, and K. T. Aust: Scripta Mater. Vol. 24 (1990), pp.2347-2350.

[8] T. G. Nieh and J. Wadsworth: Scripta Mater. Vol. 25 (1991), pp.955-958.

[9] S. Sakai, H. Tanimoto, and H. Mizubayashi: Acta Mater. Vol. 47 (1998), pp.211-217.

[10] R. D. Emery and G. L. Povirk: Acta Mater. Vol. 51 (2003), p.2079-(2087).

[11] I. Chasiotis, C. Bateson, K. Timpano, A. S. McCarty, N. S. Barker, and J. R. Stanec: Thin Solid Films Vol. 515 (2007), p.3183.

DOI: 10.1016/j.tsf.2006.01.033

[12] P. A. El-Deiry and R. P. Vinci: Mater. Res. Soc. Sym. Proc. Vol. 695 (2002), p. L4. 2. 1.

[13] D. T. Read, Y. W. Cheng, R. R. Keller, and J. D. McColskey: Scripta Mater. Vol. 45 (2001), p.583.

[14] B. C. Prorok and H. D. Espinosa: J. Nanosci. Nanotech. Vol. 2 (2002), p.427.

[15] H. D. Espinosa, B. C. Prorok, and M. Fischer: J. Mech. Phys. Sol. Vol. 51 (2003), p.47.

[16] H. D. Espinosa, B. C. Prorok, and B. Peng: J. Mech. Phys. Sol. Vol. 52 (2004), p.667.

[17] ASTM, Standard E112-96E2, in Annual Book of ASTM Standards, (1996).

[18] T. Morita, R. Mitra, and J. R. Weertman: Mater. Trans. Vol. 45 (2004), p.502.

[19] B. Zhu, R. J. Asaro, P. Krysl, K. Zhang, and J. R. Weertman: Acta Mater. Vol. 54 (2006), p.3307.

[20] J. Mahan and G. T. Charbeneau: J. Am. Acad. Gold Foil Oper. Vol. 8 (1965), p.6.

[21] T. Nenadovi, N. Bibi, N. Kraljevi, and M. Adamov: Thin Solid Films Vol. 34 (1976), p.211.

[22] J. R. Weertman: personal communication Vol. (2002), p.

[23] H. Gleiter: Prog. Mater. Sci. Vol. 33 (1989), p.223.

[24] H. VanSwygenhoven and A. Caro: Appl. Phys. Lett. Vol. 71 (1997), p.1652.

[25] J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen: Nature Vol. 391 (1998), p.561.

[26] L. Lu, S. X. Li, and K. Lu: Scripta Mater. Vol. 45 (2001), p.1163.

[27] P. J. M. Janssen, T. H. de Keijser, and M. G. D. Geers: Mater. Sci. Engi. A Vol. 419 (2006), p.238.

[28] Y. S. Kang and P. S. Ho: J. Elec. Mater. Vol. 26 (1997), p.805.

[29] S. Miyazaki, K. Shibata, and H. Fujita: Acta Mater. Vol. 27 (1979), p.855.

[30] H. Conrad and K. Jung: Mater. Sci. Engi. A Vol. 406 (2005), p.78.

[31] A. K. Mukherjee, J. E. Bird, and J. E. Dorn: Trans. ASM Vol. 62 (1969), p.155.

[32] R. L. Stocker and M. F. Ashby: Scripta Mater. Vol. 7 (1973), p.115.

[33] R. L. Coble: J. Appl. Phys. Vol. 34 (1963), p.1679.

[34] M. F. Ashby and R. A. Verrall: Acta Mater. Vol. 21 (1973), p.149.

In order to see related information, you need to Login.