Experimental Evidence that the Onset of Mechanical Softening in Nanocrystalline Metals is Strain Rate Dependent


Article Preview

This paper reports on the influence of strain rate on the onset of mechanical softening of nanocrystalline gold at room temperature. Micro-tensile testing was performed with applied strain rates on the order of 10−4 s−1 to 10−6 s−1. Our results defined a threshold strain rate, whereby plastic deformation at larger rates was dominated by dislocation processes and at smaller rates by one or more other deformation mechanisms.



Materials Science Forum (Volumes 633-634)

Edited by:

Yonghao Zhao and Xiaozhou Liao




L. W. Wang and B. C. Prorok, "Experimental Evidence that the Onset of Mechanical Softening in Nanocrystalline Metals is Strain Rate Dependent", Materials Science Forum, Vols. 633-634, pp. 99-105, 2010

Online since:

November 2009




[1] R. Valiev: Nature Vol. 419 (2002), p.887.

[2] H. Gleiter: Acta Mater. Vol. 48 (2000), pp.1-29.

[3] E. O. Hall: Proc. Phys. Soc. London B Vol. 64 (1951), p.747.

[4] N. J. Petch: J. Iron Steel Inst. Vol. 174 (1953), p.25.

[5] M. F. Ashby: Phil. Mag. Vol. 21 (1970), p.399.

[6] A. H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: Scripta Mater. Vol. 23 (1989), pp.1679-1683.

[7] G. Palumbo, U. Erb, and K. T. Aust: Scripta Mater. Vol. 24 (1990), pp.2347-2350.

[8] T. G. Nieh and J. Wadsworth: Scripta Mater. Vol. 25 (1991), pp.955-958.

[9] S. Sakai, H. Tanimoto, and H. Mizubayashi: Acta Mater. Vol. 47 (1998), pp.211-217.

[10] R. D. Emery and G. L. Povirk: Acta Mater. Vol. 51 (2003), p.2079-(2087).

[11] I. Chasiotis, C. Bateson, K. Timpano, A. S. McCarty, N. S. Barker, and J. R. Stanec: Thin Solid Films Vol. 515 (2007), p.3183.

DOI: https://doi.org/10.1016/j.tsf.2006.01.033

[12] P. A. El-Deiry and R. P. Vinci: Mater. Res. Soc. Sym. Proc. Vol. 695 (2002), p. L4. 2. 1.

[13] D. T. Read, Y. W. Cheng, R. R. Keller, and J. D. McColskey: Scripta Mater. Vol. 45 (2001), p.583.

[14] B. C. Prorok and H. D. Espinosa: J. Nanosci. Nanotech. Vol. 2 (2002), p.427.

[15] H. D. Espinosa, B. C. Prorok, and M. Fischer: J. Mech. Phys. Sol. Vol. 51 (2003), p.47.

[16] H. D. Espinosa, B. C. Prorok, and B. Peng: J. Mech. Phys. Sol. Vol. 52 (2004), p.667.

[17] ASTM, Standard E112-96E2, in Annual Book of ASTM Standards, (1996).

[18] T. Morita, R. Mitra, and J. R. Weertman: Mater. Trans. Vol. 45 (2004), p.502.

[19] B. Zhu, R. J. Asaro, P. Krysl, K. Zhang, and J. R. Weertman: Acta Mater. Vol. 54 (2006), p.3307.

[20] J. Mahan and G. T. Charbeneau: J. Am. Acad. Gold Foil Oper. Vol. 8 (1965), p.6.

[21] T. Nenadovi, N. Bibi, N. Kraljevi, and M. Adamov: Thin Solid Films Vol. 34 (1976), p.211.

[22] J. R. Weertman: personal communication Vol. (2002), p.

[23] H. Gleiter: Prog. Mater. Sci. Vol. 33 (1989), p.223.

[24] H. VanSwygenhoven and A. Caro: Appl. Phys. Lett. Vol. 71 (1997), p.1652.

[25] J. Schiotz, F. D. Di Tolla, and K. W. Jacobsen: Nature Vol. 391 (1998), p.561.

[26] L. Lu, S. X. Li, and K. Lu: Scripta Mater. Vol. 45 (2001), p.1163.

[27] P. J. M. Janssen, T. H. de Keijser, and M. G. D. Geers: Mater. Sci. Engi. A Vol. 419 (2006), p.238.

[28] Y. S. Kang and P. S. Ho: J. Elec. Mater. Vol. 26 (1997), p.805.

[29] S. Miyazaki, K. Shibata, and H. Fujita: Acta Mater. Vol. 27 (1979), p.855.

[30] H. Conrad and K. Jung: Mater. Sci. Engi. A Vol. 406 (2005), p.78.

[31] A. K. Mukherjee, J. E. Bird, and J. E. Dorn: Trans. ASM Vol. 62 (1969), p.155.

[32] R. L. Stocker and M. F. Ashby: Scripta Mater. Vol. 7 (1973), p.115.

[33] R. L. Coble: J. Appl. Phys. Vol. 34 (1963), p.1679.

[34] M. F. Ashby and R. A. Verrall: Acta Mater. Vol. 21 (1973), p.149.