Effect of RF Power on the Properties of Magnetron Sputtered ZnO:Al Thin Films Deposited at Room Temperature

Abstract:

Article Preview

RF magnetron sputtering is used to deposit Aluminum-doped zinc oxide (ZnO:Al) films on glass and p-Si substrates. This work is a study of ZnO:Al films grown at different RF powers for photovoltaic cells application, as antireflective (AR) coatings. At room temperature and argon gas pressure of 0.6 Pa, RF power was changed from 200 to 400 W. The structural, electrical and optical properties of ZnO:Al films were investigated. Under theses conditions, we have obtained c axis-oriented wurtzite structure ZnO thin films with high transmission (>85%) and low reflection in visible wavelength range and a band gap of 3.34 eV. The results of this study suggest that the variation of the RF power, used for growth, allows the control of the structural and optical properties of the films. ZnO:Al films can be used in optical applications as thin films antireflective coatings.

Info:

Periodical:

Materials Science Forum (Volumes 636-637)

Edited by:

Luís Guerra ROSA and Fernanda MARGARIDO

Pages:

991-995

DOI:

10.4028/www.scientific.net/MSF.636-637.991

Citation:

M. Selmi et al., "Effect of RF Power on the Properties of Magnetron Sputtered ZnO:Al Thin Films Deposited at Room Temperature", Materials Science Forum, Vols. 636-637, pp. 991-995, 2010

Online since:

January 2010

Export:

Price:

$38.00

[1] D.H. Zhang, T.L. Yang, J. Ma, Appl. Surf. Sci. Vol. 158 (2000), p.43.

[2] T. Minami, H. Sonohara, Jpn. J. Appl. Phys. Vol. 33 (1994), p. L1693.

[3] W.S. Lan, S.J. Fonash, J. Electron. Mater. Vol. 16 (1987), p.141.

[4] R. Ondo-Ndong, F. Pascal-Delannoy, A. Boyer, A. Giani, A. Foucaran, Mater. Sci. Eng. Vol. B97 (2003), p.68.

[5] S. Maniv, A. Zangvil, J. Appl. Phys. Vol. 49 (5) (1978), p.2787.

[6] K.B. Sundaram, A. Khan, Thin Solid Films Vol. 295 (1997), p.87.

[7] N. Croitoru, A. Seidman, K. Yassin, Thin Solid Films Vol. 150 (1987), p.291.

[8] M. Kadota, Jpn. J. Appl. Phys. Part 1 35 (9B) (1996), p.5160.

[9] J. -H. Lee, K. -H. Ko, B. -O. Park, J. Cryst. Growth Vol. 247 (2003), p.119.

[10] M.N. Kamalasanan, S. Chandra, Thin Solid Films Vol. 288 (1996), p.112.

[11] Y. Natsume, H. Sakata, Thin Solid Films Vol. 372 (2000), p.30.

[12] R. Ayouchi, F. Martin, D. Leinen, J.R. Ramos-Barrado, J. Cryst. Growth Vol. 247 (2003), p.497.

[13] F.D. Paraguay, W.L. Estrada, D.R.N. Acosta, E. Andrade, M. Miki-Yoshida, Thin Solid Films Vol. 350 (1999), p.192.

[14] J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, Y.F. Lu, Appl. Surf. Sci. Vol. 197 (2002), p.362.

[15] H. Kim, J.S. Horwitz, S.B. Qadri, D.B. Chrisey, Thin Solid Films Vol. 420 (2002), p.107.

[16] B.S. Li, Y.C. Liu, D.Z. Shen, J.Y. Zhang, Y.M. Lu, X.Q. Fan, J. Cryst. Growth Vol. 249 (2003), p.179.

[17] A. Yamada, B. Sang, M. Konagai, Appl. Surf. Sci. Vol. 112 (1997), p.216.

[18] X.L. Xu, S.P. Lau, J.S. Chen, Z. Sun, B.K. Tay, J.W. Chai, Mater. Sci. Semicond. Process. Vol. 4 (2001), p.617.

[19] G. Gordillo, C. Calderon, Sol. Energy Mater. Sol. Cells Vol. 69 (2001), p.251.

[20] G. Du, J. Wang, X. Wang, X. Jiang, S. Yang, Y. Ma, W. Yan, D. Gao, X. Liu, H. Cao, J. Xu, R.P.H. Chang, J. Cryst. Growth Vol. 243 (2003), p.43.

[21] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi, Y. Zheng, J. Cryst. Growth Vol. 243 (2002), p.151.

[22] Z. Fu, B. Lin and J. Zu, Thin Solid Films Vol. 402 (2002), p.302.

[23] T. Minami, H. Nanto and S. Takata, Jap. J. Appl. Phys. Vol. 2 (24) (1985), p. L605.

[24] J. Tauc, Optical Properties of Solids, North-Holland, Amsterdam, (1972), p.303.

[25] E.A. David and N.F. Mott, Philos. Mag. Vol. 22 (1970), p.903.

[26] T.S. Moss, Proc. R. Soc. Lond. Ser. B67 (1954), p.775.

In order to see related information, you need to Login.