The Role of Casting Temperature in Preparation of Bulk Metallic Glasses


Article Preview

In the past research on bulk metallic glasses (BMGs) has been concentrated on searching for alloy composition to obtain high glass forming ability. Very few studies are on the effect of processing condition on glass forming ability of BMGs. In this study, we have prepared CuZr-based BMGs at different casting temperatures. Increasing casting temperature increases glass forming ability and decreases the amount of the crystalline phase during BMG solidification. At a high casting temperature 1723 K, fully amorphous sample is obtained at a size of 2 mm in diameter. While under the lower casting temperatures (1523 K and 1323 K), crystalline CuZr phases exist. The formation of the crystalline phase is attributed to the initial crystals or cluster survived in the BMG melt during ingot remelting. The study indicates that casting temperature can be used as the controlling parameter to produce purely amorphous materials or crystalline CuZr-phase reinforced BMG composites, and the mechanical properties and thermal stability of the BMG composites can be tailored by the amount of the crystalline phase existed in the materials.



Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu




H. Wang "The Role of Casting Temperature in Preparation of Bulk Metallic Glasses", Materials Science Forum, Vols. 638-642, pp. 1671-1676, 2010

Online since:

January 2010





[1] G. I. Eskin: Ultrasonic Treatment of Light Alloy Melts (Gordon and Breach Science Publishers 1998).

[2] V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son and Y. Tarakanov: Mater. Sci. Eng. A Vol. 304-306 (2001), p.54.

DOI: 10.1016/s0921-5093(00)01433-7

[3] W. Klement, R. H. Willens and P. Duwez: Nature Vol. 187 (1960), p.869.

[4] W. L. Johnson: MRS Bull. Vol. 24 (1999), p.42.

[5] W. H. Wang, C. Dong and C. H. Shek: Mater. Sci. Eng. R Vol. 44 (2004), p.45.

[6] Y. Li, S. J. Poon, G. J. Shiflet, J. Xu, D. H. Kim and J. F. Löffler: MRS Bull. Vol. 32 (2008), p.624.

[7] H. Choi-Yim and W. L. Johnson: Appl. Phys. Lett. Vol. 71 (1997), p.3808.

[8] R. D. Conner, R. B. Dandliker and W. L. Johnson: Acta Mater. Vol. 46 (1998), p.6089.

[9] J. Shen, Y. J. Huang and J. F. Sun: J. Mater. Res. Vol. 22 (2007), p.3067.

[10] E. M. Carvalho and I. R. Harris: J. Mater. Sci. Vol. 15 (1980), p.1224.

[11] Y. F. Sun, B. C. Wei, Y. R. Wang, W. H. Li, T. L. Cheung and C. H. Shek: Appl. Phys. Lett. Vol. 87 (2005), p.051905.

[12] Q. Zhang, H. Zhang, Z. Zhu and Z. Hu: Mater. Trans. Vol. 46 (2005), p.730.

[13] F. Jiang, Z. B. Zhang, L. He, J. Sun, H. Zhang and Z. F. Zhang: J. Mater. Res. Vol. 21 (2006), p.8.

[14] K. B. Kim, J. Das, S. Venkataraman, S. Yi and J. Eckert: Appl. Phys. Lett. Vol. 89 (2006), p.071908.

[15] H. Bei, S. Xie and E. P. George: Phys. Rev. Lett. Vol. 96 (2006), p.105503.

[16] W. Hoyer and R. Jodicke: J. Non-Cryst. Solids Vol. 192-193 (1995), p.102.

[17] Z. W. Zhu, H. F. Zhang, H. Wang, B. Z. Ding and Z. Q. Hu: J. Mater. Res. Vol. 23 (2008), p.2714.

Fetching data from Crossref.
This may take some time to load.