Combustion Synthesis of Titanium-Based Cemented Carbides


Article Preview

TiC−Fe system cermets and TiC−SUS310L (TiC−SS) system cermets with fully relative density have been produced from elemental powders via self-propagating high-temperature synthesis (SHS) reaction combined with pseudo-hot isostatic pressing. X-ray diffraction (XRD) analysis showed that the SHS products consist of TiC and the binder phase of Fe or SS. Metallographic analysis revealed TiC particles of several micrometer size were homogeneously dispersed in the binder phase. Regardless of differences in the binders, both cermets have similar tendencies: their relative densities increased and their hardness and compressive strengths decreased with increases in the volume fraction of either Fe or SS. In addition, the cermets used stainless steel as the binder had twice superior corrosion resistance to those used iron and also their hardness and compressive strength showed excellent values.



Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu




T. Tanaka et al., "Combustion Synthesis of Titanium-Based Cemented Carbides", Materials Science Forum, Vols. 638-642, pp. 1860-1865, 2010

Online since:

January 2010




[1] F. Akhtar, S. Guo, J. Askari, J. Tian: J. Univ. Sci. Technol. Beijing, 14 (2007) 89.

[2] M.X. Gao, F.J. Oliveira, Y. Pan, L. Yang, J.L. Baptista: J.M. Vieira: Intermetallics, 13 (2005) 460-466.

[3] M. Krasnowski, A. Witek, T, Kulik: Intermetallics, 10 (2002) 371-376.

[4] N. Durlu : J. Europ: Cram. Soc., 19 (1999), 2415-2419.

[5] A. Saidi, A. Chrysanthou, J.V. Wood, J. L. Fkellie: J. Mater. Sci. 29 (1994) 4993.

[6] Q. Fan, H. Chai, Z. Jin: J. Mater. Sci. 32 (1997) 4319-4323.

[7] Q. Fan, H. Chai, Z. Jin: J. Mater. Processing Tech. 96 (1999) 102-107.

[8] W. Jing, W. Yisan : Materials Letters 61 (2007) 4393-4395.

[9] K. Matsuura, Y. Hikichi, Y. Obara, T. Ohmi, M. Kudoh: Int. J. SHS., 14 (2005) 305-311.

[10] K. Matsuura, Y. Obara and K. Kojima: Int. J. Refractory Met. Hard Mater. 27 (2009) 376-381.

[11] K. Kojima, K. Matsuura, K. Ohsasa and M. Ohno: J. JILM, 59 (2009) 2-6.

[12] Y. Obara, M. Kudoh and K. Matsuura: Mater. Trans., 49 (2008) 1168-1174.

[13] K. Matsuura and Y. Obara: Mater. Sci. For., 539-543 (2007) 809-813.

[14] K. Matsuura, Y. Hikichi and Y. Obara: Adv. Sci. Tech., (2006) 1024-1028.

[15] K. Matsuura, Y. Hikichi, Y. Obara, T. Ohmi and M. Kudoh: Int. J. SHS. 14 (2005) 305-311 Fig. 11. The result of the corrosion test in hydrochloric acid.

Fetching data from Crossref.
This may take some time to load.