Heat Transfer and Fluid Flow in Sintered Metallic Fiber Structures


Article Preview

Sintered metal fiber structures show a favourable ratio between pressure drop and inner surface area. Their exclusively open-cell morphology makes them well suited for heat transfer or temporary heat storage applications. Recently, highly conductive sintered metal fiber structures were successfully prepared from melt extracted aluminum alloy fibers. The heat conduction and fluid flow properties of metallic sintered short fiber structures were determined experimentally and compared with simple analytical models. It was found that equations taken from the available literature yield good approximations to the experimental results.



Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu




O. Andersen and J. Meinert, "Heat Transfer and Fluid Flow in Sintered Metallic Fiber Structures", Materials Science Forum, Vols. 638-642, pp. 1884-1889, 2010

Online since:

January 2010




[1] O. Andersen, C. Kostmann and G. Stephani, in: Conference Proceedings European Congress and Exhibition on Powder Metallurgy, Valencia, Spain, Octobre 20-22, 2003, Vol. 2, p.361.

[2] J. A. Roberts, in: Handbook of Fillers and Reinforcements for Plastics, edited by H. S. Katz, J. V. Milewski, Van Nostrand Reinhold, New York, 1978, p.579.

[3] R. De Bruyne, I. Lefever, J. Saelens and J. Vandamme, in: Advances in Powder Metallurgy & Particulate Materials, Proceedings of the 1996 World Congress on Powder Metallurgy & Particulate Materials, MPIF, Princeton, 1996, p.16/99.

[4] O. Andersen, T. Studnitzky, C. Kostmann and G. Stephani, in: MetFoam 2007 - Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams, edited by L. P. Lefebvre, J. Banhart and D. C. Dunand, September 5-7, 2007, Montreal, Canada, DEStech Publications, Lancaster, 2008, p.509.

[5] German Patent DE 10 2007 042 494 A1. (2009).

[6] O. Andersen, C. Kostmann, G. Stephani and G. Korb, in: Cellular Metals and Metal Foaming Technology (MetFoam 2003), Berlin, Verlag MIT Publishing, Bremen, 2003, p.481.

[7] J. M. Montes, J. A. Rodríguez and E. J. Herrera: Powder Metallurgy 46(2003)3, p.251.

[8] L. Tadrist, M. Miscevic, O. Rahli and F. Topin: Experimental Thermal and Fluid Science 28(2004) p.193.

DOI: https://doi.org/10.1016/s0894-1777(03)00039-6

[9] P. C. Carman: Transactions of the Institution of Chemical Engineers 15(1937), p.150.

[10] S. Ergun: Chemical Engineering Progress 48(1952)2, p.89.

[11] M. Brauer: Grundlagen der Einphasen- und Mehrphasenströmungen, Sauerländer Verlag, Frankfurt/Main, (1971).

[12] O. Molerus: Principles of Flow in Disperse Systems, Chapman & Hall, London, (1993).

[13] O. Andersen, G. Stephani, F. Meyer-Olbersleben and P. Neumann, in: Advances in Powder Metallurgy & Particulate Materials, Proceedings of the 1998 International Conference on Powder Metallurgy & Particulate Materials, Vol. 3, MPIF, Princeton, New Jersey 1998, pp.13-87.

DOI: https://doi.org/10.1080/10667857.1998.11752795

Fetching data from Crossref.
This may take some time to load.