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Abstract. A CPFE model was used for an assessment of the assumptions used by the ALAMEL
model concerning grain interactions. A finite element mesh was constructed for a multicrystal
consisting of four grains. There were 17496 integration points per grain. The main goal was to
capture the complex nature of the plastic fields in the vicinity of the grain boundaries. The
distribution of strain rates, both along and perpendicular to the grain boundaries, confirms that the
basic assumptions of the ALAMEL model are qualitatively correct, except at triple junctions.
Splitting of one of the grains was occasionally observed, which has also been observed
experimentally.

Introduction

Plastic deformation in metals is heterogeneous in nature. The primary reason for this is the
requirement of stress equilibrium and strain compatibility at grain boundaries, triple junctions and
quadruple junctions. Statistical models which make simple assumptions about the distribution of
stresses and strains (such as the Taylor model) cannot capture these effects, resulting in poor
predictions of deformation textures and imperfect predictions of plastic anisotropy. It has been
found that slightly more sophisticated statistical models for the interactions between neighbouring
grains improve the quality of these predictions very much [1]. One of these models is the Advanced
Lamel (ALAMEL) Model [1]. In principle crystal plasticity finite element model (CPFEM) are
even better at capturing plastic strain heterogeneities, but they require huge calculation times
compared to statistical models. Nevertheless, the present study aims at using a CPFEM model to do
a more in-depth assessment of the assumptions used by the ALAMEL concerning grain interactions.

Short Description of the Advanced Lamel (ALAMEL) Model

Most models for the plastic deformation of polycrystalline materials including the prediction of
deformation textures assume that plastic deformation is achieved by means of crystallographic slip.
For fcc metals, {111}<110> slip systems are adopted, and for bcc metals, {110}<I11> +
{112}<111> systems. They all explicitly or implicitly adopt the generalised Schmid law (or its
visco-plastic approximation) which states that a slip system is active when the resolved shear stress
reaches a critical level, the 'critical resolved shear stress’. In many deformation texture models, the
value of the latter has no effect on the result, so it may be set to be equal to a constant. However,
some of the texture models let it increase as deformation goes on (work hardening). Fig. 1 illustrates
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Fig.1 Hypothetical set of two grains taken from the mid-plane section of a sheet after cold rolling,
according to several statistical models. The grains were had a cubic shape before rolling. (a) Taylor
full constraints model. (b) LAMEL model. (¢) Pancake Relaxed Constraints model.

three models: the full constraints Taylor model (FC Taylor), the Lamel model and the Pancake
Relaxed Constraints model (RC Pancake) [1]. They are statistical models, which means that they do
not take the details of the microstructure into account. Instead, they treat the crystals one by one, or
in small clusters, and they take the crystal orientations in a statistical way from an orientation
distribution function. Fig. 1 shows a hypothetical set of two grains taken from the mid-plane section
of a rolled sheet. The crystal orientations are chosen at random from the discrete sets describing the
current texture. The interface between the grains is parallel to the rolling plane. The grains had
supposedly a cubic shape before rolling. According to the full constraints Taylor model [1-3], the
two grains have still the same shape after rolling, corresponding to the basic assumption of the FC
Taylor theory, namely that the plastic strain of all individual grains is equal to the average plastic
strain of the polycrystal (Fig. 1a). According to the LAMEL model [1], the average shape change of
a set of two stacked grains is still equal to the average shape change of the polycrystal, but in each
of the two grains, shears have been allowed to take place (Fig. 1b), which are referred to as
'relaxations'. The shears in one grain are opposite to those in the other grain. Fig. 2 shows the type
of relaxations allowed. The Pancake Relaxed Constraints model [1] is similar (fig. 1c), but it does
not require that the relaxations in each of the grains are opposite.

Fig. 2 Illustration of the two types of relaxation considered in the LAMEL model. Type I
corresponds to RD-ND shear and Type II to TD-ND shear.

These models are used to identify the active slip systems for a given increment of macroscopic
strain, find the slips and also (in case of the LAMEL model and the Pancake Relaxed Constraints
model) the relaxations. For this, kinematical equations are used relating the slip activity and the
relaxations to the macroscopic strain, as well as a condition stating that the plastic work dissipated
in the grain or in the 2-grain cluster should be minimised. This is equivalent to applying the
generalised Schmid law [4-5]. Once the slips are known, the local stress deviator and the lattice
rotations can be obtained. The latter are then used to simulate the change in deformation texture
caused by the increment of macroscopic strain. Note that models like these usually neglect elastic
strains. For the mathematical details, we refer to other papers [1]. Keeping all this in mind, and
looking back on the basic assumptions of the three models presented above, it is seen that the FC
Taylor model and the Pancake Relaxed Constraints model can be solved grain by grain, whereas the
LAMEL models has to be solved simultaneously for a pair of grains simultaneously. In this, the
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individual orientations of both grains must be taken into account. The solutions found for the stress
deviators respects the stress equilibrium along the boundary separating the two grains of the set, at
least as far as the shear stresses are concerned [1]:

o', =0 and ' =0"%, (1)
in which x; is the rolling direction, x; the transverse direction and x3 the normal to the sheet (RD,
TD ad ND in fig. 2, respectively). The LAMEL model is called an 'interaction' model, because it
focuses on the interaction between two adjacent grains, each with a lattice orientation taken at
random from the texture. It however neglects interactions at other grain boundaries. A physical
justification has been proposed for cold rolled materials with flattened grains which are nearly
parallel with the rolling plane [1]. The Advanced Lamel Model (ALAMEL) [1] is a further variant
of the LAMEL model. Fig. 3 shows its principle. The slip rates are not estimated in the centre of a
grain, as the FC Taylor model implicitly does, but rather at grain boundaries [1]. A set of grain
boundary segments is randomly chosen from the microstructure (measured or assumed). The slip
rates are then calculated in the regions at both sides of the grain boundary, and very close to it
(Regions 1 and 2, fig. 4). In this, the stress equilibrium across the grain boundary segment is to be
taken in to account. This can be achieved by using the same constitutive equations as in the LAMEL
model. A difference with the latter model is that the grain boundary segments between two regions
need not be parallel with the rolling plane. As strain goes on, the grain boundary segments tend to
rotate towards the rolling plane. As a result, the predictions of the LAMEL and ALAMEL models
are expected to converge at large thickness reductions in rolling. However, the ALAMEL model is
not limited to rolling; it can also be used to simulate other deformation processes. But it is needed to
verify whether patterns such as those illustrated in fig. 2 really exist at grain boundary segments in a
polycrystal, and whether the shear stresses are in equilibrium along those segments (Eq. (1)). A
CPFEM simulation has been carried out to that purpose. It will be described in the next paragraph.

,,4y 1

Fig. 3 Schematic representation of a microstructure as assumed by the ALAMEL model.

Verification of the assumptions of the ALAMEL model though a CPFEM simulation

A finite element mesh was constructed for a multicrystal consisting of four FCC grains with
different crystal orientations. Each grain was discretised into a large number of elements (with
17496 integration points) to effectively capture the complex nature of the plastic fields in the
vicinity of the grain boundaries. An elastic-viscoplastic constitutive law adapted to crystals
deforming by dislocation slip was implemented in ABAQUS as user material (UMAT) module, the
details of which have been given by Delannay et al. [6]. The material parameters used in this model
have been described in detail by Kanjarla et al. [7]. The strain rate sensitivity exponent m was given
the value 0.012, which is a reasonable value for a copper or an aluminium alloy (assuming absence
of dynamic strain ageing) deforming at room temperature. The distribution of strain rates, both
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along and perpendicular to the grain boundaries, was analyzed in order to check the main
assumptions of the ALAMEL model. These are:

(1) the velocity gradient tensors describing the ongoing deformation in a two boundary regions
which are directly adjacent to each other along a grain boundary (Fig. 4b) differ from each other by
opposite shear rates. The grain boundary is the shear plane.

(i1) the average velocity gradient tensors of a cluster consisting of the two boundary regions (Fig.
4a) is equal to the macroscopic velocity gradient tensor.

(i11) the shear stresses acting on the grain boundary are in equilibrium.

(b)
Fig. 4. (a) Schematic representation of the microstructure. Dark lines: grain boundaries. Shaded
region: cluster as used in the ALAMEL model. (b) A Grain Boundary Segment (GBS) in a cluster,
the reference frame attached to the GBS and the complementary shear relaxations.
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Trajectory Parallel to GB plane

Fig. 5 Distribution of d;» component of the local strain rate tensor, along the trajectory CD
parallel to the grain boundary after Plane Strain Compression. C and D are triple junctions. CD is
one of the nearly horizontal grain boundaries in Fig. 6. Legends indicate the thickness reduction in

direction 2. (1-RD, 2-ND)

Generally speaking, the CPFEM simulations have shown that assumptions (i) and (iii) are
correct, but assumption (ii) is not, i.e. the velocity gradient of the clusters is not equal to the average
velocity gradient of the polycrystal. This is illustrated in fig. 5. It shows the evolution of the strain
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rate di, (RD-ND) at a grain boundaries which is nearly normal to ND. For level of the macroscopic
strain, the evolution of two values of d); is given, one for each of the two grains. It is seen that, at
least at some distance of the triple junctions, these shears have indeed opposing signs, but they do
not exactly compensate each other. Fig. 6 illustrates what has been observed at a triple junction.
Grain 2 seems to split into two halves starting from the triple junction with grain 3 and grain 4. At
least in the vicinity of the triple junction, the boundary between grain 3 and grain 4 extends itself
into grain 2, as do the opposing shears of the type shown in Fig. 4b. This suggests that at some triple
junctions, a discrete shear strain heterogeneity of the type shown in Fig. 1 at the boundary of two of
the three grains may extend into the third grain, thereby causing this grain to split after some strain
(Fig. 7). Among all heterogeneous but geometrically admissible strain patterns that can be imagined
at triple junctions, this one is clearly the simplest, but it requires the splitting of one of the three
grains. It would be interesting to study whether this pattern corresponds to an energetically
favourable solution for certain combinations of grain orientations. It can furthermore be seen in Fig.
6 that the strain in the upper half of grain 2 is very heterogeneous, which cannot be taken into
account by a statistical model. Heavy oscillations of the stress and strain rate fields have
furthermore been observed in the vicinity of the triple junction. They did not converge upon
reductions of the mesh size. It is possible that at triple junctions, satisfactory results for detailed
stress and strain rate distributions can only be obtained if the generalized Schmid law combined
with a conventional hardening model (as done in our elastic-viscoplastic approach) is replaced by a
model that implements the local dislocation interactions in a more precise way.

grain 3

grain 4

Fig. 6 Deformed mesh showing the model microstructure after 45% height reduction in plane
strain compression. Gray scale: dj; (RD-ND) component of the strain rate. See [7] for more details.

Discussion and conclusion

The main conclusion is that the average strain rate of the area of the two grains close to a grain
boundary segment (shaded region in Fig. 4a) is not equal to the macroscopic strain rate, although the
deviation is not spectacular. A consequence of this is, that in the two grains touching each other at a
grain boundary, the shear strain-type relaxations parallel to the grain boundaries indeed differ from
each other, but they do not exactly compensate each other in order to make their average equal to
the macroscopic shear strain rate. The corresponding shear stresses are in equilibrium at the grain
boundaries. All this is true at some distance from the triple junctions. The CPFEM model has
difficulty to find a solution for the stresses and strain rates close to the triple junctions. The model
must probably be enriched by taking heterogeneous dislocation densities, lattice curvature, as well
as the discrete nature of slip into account.
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Fig 7 Hypothetical "simple" geometrically admissible strain pattern at a triple junction. A shear
strain discontinuity as shown in fig. 1 exists at the boundary between grains 1 and 2. The black
arrows indicate the shear strain-type relaxations in these grains (deviations from homogeneous
strain). The pattern extends itself in Grain 3, thereby causing the latter to split along the dashed line
as strain goes on.
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