Key Factors in Grain Refinement of Martensite and Bainite

Abstract:

Article Preview

Grain refinement in lath martensite and bainite structures, which is important for strengthening and toughening, are discussed in various aspects. Strain accommodation plays important roles to determine final crystal sizes of bainitic ferrite (BF) and martensite. There is strong variant selection of BF by natures of the austenite grain boundary where it nucleates. For small undercooling, such variant selection leads to coarse bainite block and packet sizes. More BF variants are formed by increasing undercooling, which leads to nucleation of BF variants of less potency, and by increasing strength of materials, which results in more self-accommodation of transformation strain due to suppression of plastic accommodation. In lath martensite, there seems to be similar variant selection at austenite grain boundaries. However, packet/block sizes in lath martensite decreases with an increase in carbon content because of more extensive self-accommodation due to lower transformation temperatures than bainite.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

3044-3049

DOI:

10.4028/www.scientific.net/MSF.638-642.3044

Citation:

T. Furuhara et al., "Key Factors in Grain Refinement of Martensite and Bainite", Materials Science Forum, Vols. 638-642, pp. 3044-3049, 2010

Online since:

January 2010

Export:

Price:

$35.00

[1] T. Maki, I. Tamura: Tetsu-to-Hagané Vol. 67 (1981), p.852.

[2] S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki: Acta Mater. Vol. 51 (2003), p.1789.

[3] S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen: Acta Mater. Vol. 54 (2006), p.5323.

[4] A. F. Gourgues, H. M. Flower, T. C. Lindley: Mater. Sci. Technol. Vol. 16 (2000), p.26.

[5] A. Lambert-Perlade, A. F. Gourgues, A. Pineau: Acta Mater. Vol. 52 (2004), p.2337. Fig. 5: Crystallography of upper bainite and lath martensite substructures in Fe-9Ni-C alloys.

[6] T. Furuhara, H. Kawata, S. Morito, T. Maki: Mater. Sci. Engng. A Vol. 431 (2006), p.228.

[7] T. E. Swarr, G. Krauss: Metall. Trans. A Vol. 7A (1976), p.41.

[8] M. J. Roberts: Metall. Trans. Vol. 1(1970), p.3287.

[9] S. Morito. H. Yoshida, T. Maki, X. Huang: Mater. Sci. Engng. A Vol. 438-440 (2006), p.237.

[10] T. Inoue, S. Matsuda, Y. Okamura, K. Aoki: Trans. JIM Vol. 11 (1970), p.36.

[11] E. Bouyne, H. M. Flower, T. C. Lindley, A. Pineau: Scripta Mater. Vol. 39 (1998), p.295.

[12] G. Krauss: Steels, Processing, Structure and Performance, (ASM International, 2005), p.301.

[13] R. W. K. Honeycombe, F. B. Pickering: Metall. Trans. Vol. 3 (1972), p.1099.

[14] G. B. Olson, M. Cohen: Metall. Trans. Vol. 7 (1976), p. (1905).

[15] G. B. Olson, M. Cohen: Scripta Metall. Vol. 9 (1975), p.1247.

[16] M. Grujicic, H. C. Ling, D. M. Haezebrouck, W. S. Owen, in; Martensite - A Tribute to Morris Cohen -, ed. by G. B. Olson and W. S. Owen, (ASM International, 1992), p.175.

[17] G. B. Olson, M. Cohen, in: Frontiers in Materials Technologies, ed. by M. A. Mayers and O. T. Inal, (Elsevier, 1985), p.43.

[18] R. Datta, G. Ghosh, V. Raghavan: Scripta Metall. Vol. 20 (1986), p.559.

[19] G. R. Speich, H. Warlimont, J. Iron Steel Inst. Vol. 206 (1968), p.385.

[20] T. Furuhara, S. Morito, T. Maki: Proc. the 1st Int. Symp. on Steel Science, 2007, ISIJ, p.51.

[21] L. Kaufman, M. Cohen: Progress in Metal Physics Vol. 7 (1958), p.165.

[22] S. Morito, J. Nishikawa, T. Maki: ISIJ Int. Vol. 43 (2003), p.1475.

[23] H. K. D. H. Bhadeshia: Bainite in Steels, 2nd ed., (IOM Communications, 2001), p.19.

[24] S. B. Singh, H. K. D. H. Bhadeshia: Mater. Sci. Engng. A Vol. 245 (1998), p.72.

[25] T. Furuhara, T. Maki: Mater. Sci. Engng. A. Vol. 312 (2001), p.145.

[26] T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, T. Maki: Metall. Mater. Trans. A Vol. 32 (2008), p.1003.

[27] G. Miyamoto, A. Shibata, T. Maki, T. Furuhara: Acta Mater. Vo. 57 (2009), p.1120.

[28] S. Morito, J. Nishikawa, T. Ohba, T. Furuhara, T. Maki, Proc. Int. Conf. on Martensitic Transformations 2008, in press.

[29] H. C. Ling, W. S. Owen: Acta Metall. Vol. 29 (1981), p.1721.

[30] K. Shimizu, M. Oka, C. M. Wayman: Acta Metall. Vol. 18 (1970), p.1005.

[31] S. Matsuda, T. Inoue, H. Mimura, Y. Okamura, in: Toward Improved Ductility and Toughness, ed. by ISIJ and JIM, (Climax Molybdenum Development Company Japan Ltd., 1972), p.47.

[32] S. Isogawa, H. Yoshida, Y. Hosoi, Y. Tozawa: J. Mater. Process. Technol. Vol. 74 (1998), p.298.

[33] K. Fujiwara, S. Okaguchi: Tetsu-to-Hagané Vol. 80 (1994), p.771.

[34] H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, T. Maki: Mater. Sci. Engng. A Vol. 438-440 (2006), p.140.

[35] Z. Guo, C.S. Lee, J.W. Morris Jr.: Acta Mater. Vol. 52, (2004), p.5511.

In order to see related information, you need to Login.