Bonding and Separation Behaviors between Ti-Sn Alloys and High Carbon Steel

Abstract:

Article Preview

Ti-Sn binary alloys (Ti-5 to 20 mol% Sn) were diffusion-bonded to high carbon steel between 1073 and 1273 K for 3.6 ks in a vacuum to investigate the influence of the alloy composition on the interfacial microstructures. Ti-5 and 10 mol% Sn alloys were attached firmly to the steel at a bonding temperature of 1273 K. A continuous TiC layer was formed along the interface, while voids were observed between the TiC layer and the steel. Although the joints with Ti-15 and 20 mol% Sn alloys were also prepared at 1273 K, these joints separated near the interface after the bonding treatment. The TiC layer was formed in the separated surface of Ti-Sn alloy, and Fe in the steel diffused into the Ti-Sn alloy. This indicates that the Ti-15 and 20 mol% Sn alloys established contact with the steel at elevated temperatures until just before the separation. The specimens bonded at 1173 K also denoted the same tendency. However, the Ti-15 mol% Sn/steel joint bonded at 1073 K showed a shear strength of more than 50 MPa. The mechanism and the application of the interface separation are discussed on the basis of the microstructural observations.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

3787-3792

DOI:

10.4028/www.scientific.net/MSF.638-642.3787

Citation:

Y. Morizono et al., "Bonding and Separation Behaviors between Ti-Sn Alloys and High Carbon Steel", Materials Science Forum, Vols. 638-642, pp. 3787-3792, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.