Fracture Toughness of a Silica-Doped Cubic Zirconia (8Y-CSZ)


Article Preview

In a high-purity 8Y-CSZ, the doping of 0.15 - 5 mass% pure silica introduces a glass phase dispersing uniformly along grain-boundary facets and at multiple junctions. For materials with grain sizes of 0.75 - 2.4 m, the dispersion of the glass phase decreases the elastic modulus, the Vickers hardness and the elastic modulus-to-hardness ratio, whereas it affects little in the fracture toughness measured by a Vickers-indentation method and a single-crack-precracked-beam method. Inspection of crack propagation paths shows that the glass phase with sizes smaller than those of the matrix grains is not a site for easy crack-propagation, but provides a site for a crack-deflection mechanism.



Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu






K. Hiraga et al., "Fracture Toughness of a Silica-Doped Cubic Zirconia (8Y-CSZ) ", Materials Science Forum, Vols. 638-642, pp. 3846-3851, 2010

Online since:

January 2010




[1] M. C. Martin and M. L. Mecartney: Solid State Ionics Vol. 161 (2003), p.67.

[2] A. A. Sharif, P.H. Imamura, T. E. Mitchell and M. L. Mecartney: Acta Mater. Vol. 46 (1998), p.3863.

[3] A. A Sharif and M. L. Mecartney: Acta Mater. Vol. 51 (2003), p.1633.

[4] N. -H. Kwon, C. -H. Kim, H. S. Song and H. -L. Lee: Mater. Sci. Eng., A, Vol. 299 (2001), p.184.

[5] M. Nabbaro, P. Recio, J. R. Jurado and P. Duran: J. Mater. Sci. Vol. 30 (1995), p. (1949).

[6] L. Donzel and S. G. Roberts: J. Euro. Ceram. Vol. 20 (2000), p.2547.

[7] R. A. Cutler, J. R. Reynolds and A. Jones: J. Am. Ceram. Soc. Vol. 75 (1992), p.2173.

[8] K. Hiraga, H. Y. Yasuda and Y. Sakka: Mater. Sci. Eng. A, Vol. 234-236 (1997), p.1026.

[9] K. Hiraga, K. Nakano, T. S. Suzuki and Y. Sakka: J. Am. Ceram Soc. Vol. 85 (2002), p.2763.

[10] G. R. Antis, P. Chanticul, B. R. Lawn and D. B. Marshall: J. Am. Ceram. Soc. Vol. 64 (1981), p.533.

[11] T. Nose and T. Fujii: J. Am. Ceram. Soc., Vol. 71 (1988), p.328.

[12] D. B. Marshall, T. Noma and A. G. Evans: J. Am. Ceram. Soc. Vol. 65 (1982), P. C175.

[13] W. C. Butterman and W. R. Foster, in: Phase Diagrams for Zirconium and Zirconia Systems, edited by H. M. Ondik and H. F. McMurdie, The American Ceramic Society, (1998) , p.134.

[14] M. Hukuhara and A. Sanpei: Jpn. J. Appl. Phys., Vol. 33 (1994), p.2890.

[15] K. K. Chawla: Composite Materials, Springer-New-York, (1998), p.235.

[16] M Gust, G. Goo, J. Wolfenstine and M. L. Mecartney: J. Am. Ceram. Soc. Vol. 76 (1993), p.1681.

[17] L. Gremillard, T. Epicier, J. Chevalier and G. Fantozzi: Acta Mater. Vol. 48 (2000), p.4647.

[18] E. L. Bourhis and D. Metayer: J. Non-Cryst. Solids Vol. 272 (2000) , 34.

[19] J. P. Lucas: Scripta Metall. Mater. Vol. 32 (1995), p.743.

[20] M. F. Ashby: Acta Metall Mater. Vol. 41 (1993), p.1313.

[21] Bhargava and B. R. Patterson : J. Am. Ceram. Soc. Vol. 80 (1997), p.1863.

[22] Y. Ikuhara, P. Thavorniti and T. Sakuma: Acta Mater. Vol. 45 (1997), p.5275.

[23] K. Morita, K. Hiraga and B. -N. Kim: Acta Mater. Vol. 52 (2004), p.3355.

[24] K. T. Faber and A. G. Evans: Acta Metall. Vol. 31 (1983), p.565.

[25] K. T. Faber and A. G. Evans: Acta Metall. Vol. 31 (1983), P. 577.

[26] B. -N. Kim and T. Kishi: Mater. Sci. Eng. A, Vol. 176 (1994) , p.371.

In order to see related information, you need to Login.