Fabrication of Hollow Nano Particles of Metallic Oxides through Oxidation Process

Abstract:

Article Preview

The formation mechanisms of hollow metal oxide through the oxidation of several metal nanoparticles have been studied by transmission electron microscopy. For Zn, Al, Cu, Ni and Fe nanoparticles, hollow oxide nanoparticles were obtained as a result of vacancy aggregation in the oxidation processes. The formation of the hollow morphology is attributed to the faster outward diffusion of metal ions through the oxide layer in the oxidation processes. Further changes in morphology during the annealing of hollow Cu, Ni and Fe oxides at higher temperatures in air were examined.

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu

Pages:

67-72

DOI:

10.4028/www.scientific.net/MSF.638-642.67

Citation:

H. Nakajima and R. Nakamura, "Fabrication of Hollow Nano Particles of Metallic Oxides through Oxidation Process", Materials Science Forum, Vols. 638-642, pp. 67-72, 2010

Online since:

January 2010

Export:

Price:

$38.00

[1] Y. Xia and N.J. Halas: MRS Bulletin Vol. 30 (2005) p.338.

[2] S. W. Kim, M. Kim, W. Y. Lee and T. Hyeon: J. Am. Chem. Soc. Vol. 124 (2002), p.7642.

[3] Y. Sun and Y. Xia: J. Am. Chem. Soc. Vol. 126 (2004), p.3892.

[4] Y. Deng, L. Zhao, B. Shen, L. Liu and W. Hu: J. Appl. Phys. Vol. 100 (2006), p.014304.

[5] J. Lee, K. Sohn and T. Hyeon: J. Am. Chem. Soc. Vol. 123 (2001), p.5146.

[6] T. K. Mandal, M. S. Fleming and D. R. Walt: Chem. Mater. Vol. 12 (2000), p.3481.

[7] C. Graf and A. van Blaaderen: Langmuir Vol. 18 (2002), p.524.

[8] F. Caruso, R.A. Caruso, and H. Möhwald: Science Vol. 282 (1998), p.1111.

[9] Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai and A. P. Alivisatos: Science Vol. 304 (2004), p.711.

[10] Y. Yin, C. K. Erdonmez, A. Cabot, S. Hughes and A. P. Alivisatos: Adv. Funct. Mater. Vol. 16 (2006), p.1389.

[11] A.D. Smigelskas and E.O. Kirkendall: Trans. AIME Vol. 171 (1947), p.130.

[12] H.J. Fan, U. Gösele, M. Zacharias: Small Vol. 3 (2007), p.1660.

[13] R. Nakamura, J. G. Lee, D. Tokozakura, H. Mori and H. Nakajima: Mater. Lett. Vol. 61 (2007), p.1060.

[14] R. Nakamura, D. Tokozakura, H. Nakajima, J. G. Lee and H. Mori: J. Appl. Phys. Vol. 101 (2007), p.074303.

[15] R. Nakamura, J. G. Lee, H. Mori and H. Nakajima: Phil. Mag. Vol. 88 (2008), p.257.

[16] R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto and H. Nakajima: Acta Mater. Vol. 57 (2009), p.4261.

[17] A.M. Gusak, T.V. Zaporozhets, K.N. Tu, U. Gösele, Philos. Mag. Vol. 85 (2005), p.4445.

[18] R. Nakamura, D. Tokozakura, J. G. Lee, H. Mori and H. Nakajima: Acta Mater. Vol. 56 (2008), p.5276.

[19] B.A. Thompson and R.L. Strong: J. Phys. Chem. Vol. 67 (1963) p.594.

[20] D. Pavlov: Electrochim. Acta Vol. 23 (1978), p.845.

[21] T. Laitinen and J.P. Pohl: Electrochim. Acta, Vol. 34 (1989), p.377.

In order to see related information, you need to Login.