Microstructure and Sintering Behavior of Mullite-Zirconia Composites


Article Preview

In the present work, the structure and sintering behaviour of mullite-zirconia composites were investigated. The composites were prepared by reaction sintering of Algerian kaolin, α-Al2O3, and stabilized zirconia (3Y-TZP). The raw materials were wet ball milled in a planetary ball mill followed by attrition. The green samples shaped using a uniaxial press were sintered between 1100°C and 1600°C for 2 hours. The density was measured by the water immersion method. Phases present and change of the average crystallite size of the mullite phase as a function of sintering temperature and ZrO2 content were characterized through X-ray diffraction. Mulite grains had whiskers' shape; however, the increase of ZrO2 content changed the morphology of grains to near spherical shape. The microstructure of the samples revealed uniform distribution of ZrO2 particles; also, aluminium was uniformly distributed on all grains exception on zirconia grains. At least a relative density of 95 % was achieved for all samples at a relatively lower sintering temperature of 1500°C. In composites containing up to 16 wt. % ZrO2, the zirconia phase retained its tetragonal structure and the transformed part did not exceed 3 %. However, with the addition of 32 wt. % ZrO2 around 66 % of the tetragonal structure changed to monoclinic structure.



Materials Science Forum (Volumes 638-642)

Main Theme:

Edited by:

T. Chandra, N. Wanderka, W. Reimers , M. Ionescu




F. Sahnoune et al., "Microstructure and Sintering Behavior of Mullite-Zirconia Composites", Materials Science Forum, Vols. 638-642, pp. 979-984, 2010

Online since:

January 2010




[1] X.H. Jin, L. Gao, Y.R. Chen and Q.M. Yuan: J. Eur. Ceram. Soc. Vol. 20 (2000), p.2115.

[2] H.C. Park, T.Y. Yang, S.Y. Yoon and R. Stevens: Mate. Sci. A Vol. 405 (2005), p.233.

[3] N. Claussen: J. Phys. Vol. 47 (1986), p.693.

[4] Z. F. Yang, H. Y. Xu, J. Q. Tan, and Q. M. Yuan: J. Chin. Ceram. Soc. Vol. 17 (1989), p.467.

[5] J. S. Hong . X. X, Huang. J. K, Guo and B. S, Li: J Chin. Ceram. Soc. Vol. 20 (1992), p.410.

[6] P. F. Becher and T. W Tiegs: J. Am. Ceram. Soc. Vol. 70 (1987), p.651.

[7] R. Ruh and K. S. Mazdiyashi: J. Am. Ceram. Soc. Vol. 71 (1988), p.503.

[8] J. K. J. Guo. Chin. Ceram. Soc. Bull. Vol. 14 (1995), p.18.

[9] J.S. Moya and M.I. Osendi: J. Mater. Sci. Vol 19 (1984), p.2909.

[10] S. Prochazka, J.S. Wallace and N. Claussen: J. Am. Ceram. Soc. Vol. 66 (1983), p.125.

[11] Q.M. Yuan, J.Q. Tan and Z.G. Jin: J. Am. Ceram. Soc. Vol. 69 (1986), p.265.

[12] J.S. Moya and P. Miranzo, in: High Tech Ceramics, Edited by P. Vincenzini. Elsevier Science Publishers B. V, Amsterdam (1987).

[13] D.J. Green, R.H.J. Hannink and M.V. Swain: Transformation Toughening Ceramics, CRC Press Inc., FL, (1989).

[14] H. Schneider, K. Okada and J. Pask: Mullite and Mullite Ceramics, John Wiley & Sons, New York, (1994).

[15] F. Sahnoune, M. Chegaar, N. Saheb, P. Goeuriot and F. Valdivieso: App. Clay Sci. Vol. 38 (2008), p.304.

DOI: 10.1016/j.clay.2007.04.013

[16] F. Sahnoune, M. Chegaar, N. Saheb, P. Gueuriot, and F. Valdivieso: Adv. App. Ceram. Vol. 107 (2008) p.9.

[17] M. Heraiz, A. Merrouche and N. Saheb: Adv. App. Ceram. Vol. 105 (2006), p.285.

[18] K. Das, S.K. Das, B. Mukherjee and G. Banerjee: Inter. Ceram. Vol. 47 (1998), p.304.

[19] C.Y. Chen, G.S. Lan and W.H. Tuan: J. Eur. Ceram. Soc. Vol. 20 (2000), p.2519.

[20] CRC materials science and engineering handbook, edited by James F. Shackelford and William Alexander, (1995).

Fetching data from Crossref.
This may take some time to load.