Operation of Silicon Carbide BJTs Free from Bipolar Degradation

Abstract:

Article Preview

The mechanisms of bipolar degradation in silicon carbide BJTs are investigated and identified. Bipolar degradation occurs as result of stacking fault (SF) growth within the low-doped collector region. A stacking fault blocks vertical current transport through the collector, driving the defective region into saturation. This results in considerable drop of emitter current gain if the BJT is run at a reasonably low collector-emitter bias. The base region does not play any significant role in bipolar degradation. Long-term stress tests have shown full stability of large-area high-power BJTs under minority carrier injection conditions provided the devices are fabricated using low Basal Plane Dislocation (BPD) material. However, an approximately 20% current gain compression is observed for the first 30-60 hours of burn-in under common emitter operation, which is related to instability of surface recombination in the passive base region.

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Edited by:

Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller

Pages:

1057-1060

DOI:

10.4028/www.scientific.net/MSF.645-648.1057

Citation:

A. O. Konstantinov et al., "Operation of Silicon Carbide BJTs Free from Bipolar Degradation", Materials Science Forum, Vols. 645-648, pp. 1057-1060, 2010

Online since:

April 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.