Impact Ionization in 4H-SiC Nuclear Radiation Detectors

Abstract:

Article Preview

Nonequilibrium-charge transport has been studied in a structure with a Schottky barrier fabricated on a CVD-grown n-4H-SiC film. The charge introduced by single α-particles was recorded by nuclear spectrometric techniques. The maximum electric field strength in the structure was 1.1 MV/cm. The recorded charge as a function of the reverse bias applied to the structure shows a superlinear rise. Simultaneously, the width of the amplitude spectrum increased superlinearly, too. The observed effect is attributed to the initial stage of impact ionization. The manifestation of the process at unusually low fields (~1.0 MV/cm) is accounted for by specific features of the charge generation process. The carriers generated by a α-particle are found to be originally "heated". The results obtained allow prognostication of the appearance of SiC detectors of the "proportional counter" type in the near future. This is enabled by the advances made in the field of high-voltage electronics in obtaining in practice the required electric field strengths.

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Edited by:

Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller

Pages:

1077-1080

DOI:

10.4028/www.scientific.net/MSF.645-648.1077

Citation:

A. M. Ivanov et al., "Impact Ionization in 4H-SiC Nuclear Radiation Detectors", Materials Science Forum, Vols. 645-648, pp. 1077-1080, 2010

Online since:

April 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.