Characterisation of Low Noise 4H-SiC Avalanche Photodiodes


Article Preview

We report photomultiplication, M, and excess noise, F, measurements at 244nm and 325nm in two 4H-SiC separate absorption and multiplication region avalanche photodiodes (SAM-APDs). Sample A is a 4 x 4 array of 16 SAM-APDs. This structure possesses a relatively thin absorption layer resulting in more mixed injection, and consequently higher noise than sample B. The absorption layer of sample B does not deplete, so 244nm light results in >99% absorption outside the depletion region resulting in very low excess noise. Both structures exhibit very low dark currents and abrupt uniform breakdown at 194V and 624V for samples A and B respectively. Excess noise is treated using a local model [1]. The effective ratio of impact ionisation coefficients (keff) is approximately 0.007, this indicates a significant reduction in the electron impact ionisation coefficient, α, compared to prior work [2-5]. We conclude that the value of α will require modification if thick silicon carbide structures are to fit the local model for multiplication and excess noise.



Materials Science Forum (Volumes 645-648)

Edited by:

Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller






J. E. Green et al., "Characterisation of Low Noise 4H-SiC Avalanche Photodiodes", Materials Science Forum, Vols. 645-648, pp. 1081-1084, 2010

Online since:

April 2010




[1] R. J. McIntyre: IEEE Trans. Electron Devices Vol. ED-13 (1966), p.164.

[2] B. K. Ng, F. Yan, J. P. R. David, R. C. Tozer, G. J. Rees, C. Qin, and J. H. Zhao: IEEE Photon. Technol. Lett. Vol. 14 (2002), p.1342.

[3] X. Guo, A. L. Beck, Z. Huang, N. Duan, J. C. Campbell, D. Emerson, and J. J. Sumakeris: IEEE Trans. Electron Devices Vol. 53 (2006), p.2259.

[4] X. Bai, X. Guo, D. C. Mcintosh, H. -D. Liu, and J. C. Campbell: IEEE Journal of Quantum Electronics Vol. 43 (2007), p.1159.

[5] W. S. Loh, B. K. Ng, J. S. Ng, S. I. Soloviev, H. -Y. Cha, P. M. Sandvik, C. M. Johnson, and J. P. R. David: IEEE Trans. Electron Devices Vol. 55 (2008), p. (1984).

[6] A. O. Konstantinov, N. Nordell, Q. Wahab, and U. Lindefelt: J. Elec. Materials Vol. 27 (1998), p.335.

[7] E. Bellotti, H. -E. Nilsson, K. F. Brennan, P. P. Ruden, and R. Trew: Journal of Applied Physics Vol. 87 (2000), p.3864.

[8] T. Hatakeyama, T. Watanabe, T. Hinohe, K. Kojima, K. Arai, and N. Sano: Applied Physics Letters Vol. 85 (2004), p.1380.

[9] A. O. Konstantinov, Q. Wahab, N. Nordell, and U. Indefelt: Applied Physics Letters Vol. 71 (1997), p.90.

[10] B. K. Ng, J. P. R. David, R. C. Tozer, G. J. Rees, F. Yan, J. H. Zhao, and M. Weiner: IEEE Transactions on Electron Devices Vol. 50 (2003), p.1724.

[11] R. Raghunathan and B. J. Baliga: Sol. State Electron. Vol. 43 (1999), p.199.

[12] M. Razeghi and A. Rogalski: Journal of Applied Physics Vol. 79 (1996), p.7433.

[13] E. Monroy, F. Omnès, and F. Calle: Semicond. Sci. Technol. Vol. 18 (2003), p. R33.

[14] Z. Xu and B. M. Sadler: IEEE Communications Magazine (May 2008), p.67.

[15] B. J. Baliga: Power Semiconductor Devices New York: John Wiley & Sons (1987).

[16] C. E. Weitzel, J. W. Palmor, C. H. Carter, K. Moore, K. K. Nordquist, S. Allen, C. Thero, and M. Bhatnagar: IEEE Transactions on Electron Devices Vol. 43 (1996), p.1732.

DOI: 10.1109/16.536819

[17] R. R. Siergiej: Material Science and Engineering Vol. B61-B62 (1999), p.9.

[18] K. S. Lau, C. H. Tan, B. K. Ng, K. F. Li, R. C. Tozer, J. P. R. David, and G. J. Rees: Measurement Science & Technology Vol. 17 (2006), p. (1941).

[19] S. G. Sridhara: Journal of Applied Physics Vol. 84 (1998), p.2963.

[20] T. Hatayama, H. Yano, Y. Uraoka, and T. Fuykyi: Microelectronic Engineering Vol. 83 (2006), p.30.

In order to see related information, you need to Login.