Hydrogen Intercalation below Epitaxial Graphene on SiC(0001)


Article Preview

In this report we review how intrinsic drawbacks of epitaxial graphene on SiC(0001) such as n-doping and strong electronic influence of the substrate can be overcome. Besides surface transfer doping from a strong electron acceptor and transfer of epitaxial graphene from SiC(0001) to SiO2 the most promising route is to generate quasi-free standing epitaxial graphene by means of hydrogen intercalation. The hydrogen moves between the (6p3×6p3)R30◦ reconstructed initial carbon (so-called buffer) layer and the SiC substrate. The topmost Si atoms which for epitaxial graphene are covalently bound to this buffer layer, are now saturated by hydrogen bonds. The buffer layer is turned into a quasi-free standing graphene monolayer, epitaxial monolayer graphene turns into a decoupled bilayer. The intercalation is stable in air and can be reversed by annealing to around 900 °C. This technique offers significant advances in epitaxial graphene based nanoelectronics.



Materials Science Forum (Volumes 645-648)

Edited by:

Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller




C. Riedl et al., "Hydrogen Intercalation below Epitaxial Graphene on SiC(0001)", Materials Science Forum, Vols. 645-648, pp. 623-628, 2010

Online since:

April 2010




[1] A.K. Geim: Science Vol. 324 (2009), p.1530.

[2] C. Berger et al.: Science Vol. 312 (2006), p.1191.

[3] T. Ohta et al.: Science Vol. 313 (2006), p.951.

[4] C. Riedl, A.A. Zakharov, and U. Starke: Appl. Phys. Lett. Vol. 93 (2008), p.033106.

[5] K.V. Emtsev et al.: Nature Materials Vol. 8 (2009), p.203.

[6] F. Hiebel et al.: Phys. Rev. B Vol. 78 (2008), p.153412.

[7] U. Starke, and C. Riedl: J. Phys. CM Vol. 21 (2009), p.134016.

[8] C. Riedl et al.: Phys. Rev. B Vol. 76 (2007), p.245406.

[9] P. Mallet et al.: Phys. Rev. B Vol. 76 (2007), p.041403(R).

[10] K.V. Emtsev et al.: Phys. Rev. B Vol. 77 (2008), p.155303.

[11] A. Mattausch, and O. Pankratov, Phys. Rev. Lett. Vol. 99 (2007), p.076802.

[12] I. Gierz et al.: Nano Letters Vol. 8 (2008), p.4603.

[13] C. Coletti, C. Riedl, D.S. Lee, B. Krauss, K. v. Klitzing, J.H. Smet, U. Starke, arXiv: 0909. 2966.

[14] D.S. Lee et al.: Nano Letters Vol. 8 (2008), p.4320.

[15] S. Soubatch et al.: Mat. Sci. Forum, Vol. 483-485 (2005), p.761.

[16] C.L. Frewin et al.: Mat. Sci. Forum Vol. 615-617 (2009), p.589.

[17] H. Tsuchida, I. Kamata, and K. Izumi, J. Appl. Phys. Vol. 85 (1999) p.3569.

[18] T. Seyller, J. Phys. CM Vol. 16 (2004), p. S1755.

[19] C. Coletti, C.L. Frewin, A.M. Hoff, and S.E. Saddow, Electrochem. Solid-State Lett. Vol. 11 (2008), p. H285.

DOI: https://doi.org/10.1149/1.2961590

[20] J.N. Andersen et al.: Radiat. News Vol. 4 (1991), p.15.

[21] N. Sieber et al.: Phys. Rev. B Vol. 67 (2003), p.205304.

[22] D.C. Elias et al.: Science Vol. 323 (2009), p.610.

[23] A. Bostwick et al.: Phys. Rev. Lett. Vol. 103 (2009), p.056404.

[24] N.P. Guisinger et al.: Nano Letters Vol. 9 (2009), p.1462.

[25] R. Balog et al.: J. Am. Chem. Soc. Vol. 131 (2009), p.8744.