Improved Characteristics of 4H-SiC MISFET with AlON/Nitrided SiO2 Stacked Gate Dielectrics

Abstract:

Article Preview

We investigated the impact of a combination treatment of nitrogen plasma exposure and forming gas annealing (FGA) for a thermally grown SiO2 layer on channel electron mobility in 4H-SiC metal-insulator-semiconductor field-effect-transistors (MISFETs) with and without deposited aluminum oxynitride (AlON) overlayers. This treatment was effective for improving the interface properties of nitrided SiO2/SiC structures formed by thermal oxidation in NOx ambient as well as pure SiO2/SiC structures. A channel mobility enhancement was perfectly consistent with a reduction in interface state density depending on the process conditions of the combination treatment, and a peak mobility of 26.9 cm2/Vs was achieved for the MISFETs with the nitrided SiO2 single dielectric layer. Comparable channel mobility was obtained with a gate insulator consisting of the AlON stacked on a thin nitrided SiO2 interlayer, indicating that both the combination treatment and the AlON/SiO2 stacked dielectrics can be integrated into the SiC MISFET fabrication processes.

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Edited by:

Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller

Pages:

991-994

DOI:

10.4028/www.scientific.net/MSF.645-648.991

Citation:

T. Hosoi et al., "Improved Characteristics of 4H-SiC MISFET with AlON/Nitrided SiO2 Stacked Gate Dielectrics ", Materials Science Forum, Vols. 645-648, pp. 991-994, 2010

Online since:

April 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.