Numerical and Experimental Investigation of NH4Cl Solidification


Article Preview

This paper deals with the validation of a volume averaged multiphase solidification model based on a benchmark experiment using NH4Cl-H2O as model alloy and Particle Image Velocimetry (PIV) as optical measurement method. For the numerical modelling of the solidification, different phases (e.g. liquid, equiaxed grains and columnar dendrite trunks) have been considered. The mass, momentum, energy conservation and species transport equations for each phase have been solved. The Eulerian-Eulerian model equations have been implemented in the commercial Finite Volume Method based software FLUENT-ANSYS v6.3 using User-Defined Functions (UDF). The mass transfer has been modelled by diffusion controlled crystal growth. The simulation of the NH4Cl-H2O solidification has been numerically investigated as a two-dimensional unsteady process in the cross-section of a 100 x 80 x 10 (mm3) experimental benchmark. Since during the experiment both columnar and equiaxed growth of NH4Cl have been observed, both phenomena have been considered in the simulation. The predicted distribution of the solidification front and the measured thickness of the mushy zone have been compared with the measurements.



Edited by:

A. Roósz, V. Mertinger, P. Barkóczy and Cs. Hoó






L. Könözsy et al., "Numerical and Experimental Investigation of NH4Cl Solidification", Materials Science Forum, Vol. 649, pp. 367-372, 2010

Online since:

May 2010




In order to see related information, you need to Login.

In order to see related information, you need to Login.