Effect of Ti Content on Hydrogen Storage Properties of Amorphous MgNi Alloy


Article Preview

Cycle capacities of Amorphous Mg-Ni alloys declined so fast therefore they can’t be used practically. In this paper,the influence of adding Ti on the discharge capacity and cycle stability of the alloys were investigated. Amorphous Mg1-xTixNi (x=0, 0.1, 0.2, 0.3) alloy powder was prepared successfully by mechanical alloying (MA). X-ray diffraction (XRD) results show that MgNi alloy formed completely amorphous phase after ball milling with 15h. But for Mg1-xTixNi (x=0.1, 0.2, 0.3) alloy, it took 23h. It can be concluded that Ti partial substituting Mg would decrease the amorphous phase forming ability of Mg-Ni based alloy. Compared with amorphous MgNi alloy, the maximal discharge capacities of Mg1-xTixNi (x=0.1, 0.2, 0.3) alloy were decreased slightly, but the cycle stabilities were significantly enhanced. Mg0.9Ti0.1Ni alloy showed the largest discharge capacity and the best cycle stability.



Edited by:

Yafang Han, Tianmin Wang and Shaoxiong Zhou




S. Gao et al., "Effect of Ti Content on Hydrogen Storage Properties of Amorphous MgNi Alloy ", Materials Science Forum, Vol. 650, pp. 234-238, 2010

Online since:

May 2010




[1] A. Szajek, M. Jurczyk, I. Okońska, K. Smardz, E. Jankowska, L. Smardz: Alloys and Compounds Vol. 436(2007), pp.345-350.

DOI: https://doi.org/10.1016/j.jallcom.2006.07.043

[2] L.Z. Ouyanga, H.W. Donga, C.H. Peng, L.X. Sun, M. Zhu: Hydrogen Energy, Vol. 32(2007), pp.3929-3935.

[3] X.B. Liu, Z.L. Liu: Metallic Functiona1 Material (in chinese), Vol. 14(2007), pp.32-36.

[4] M. Jurczyka, L. Smardzb, I. Okonska, E. Jankowska, M. Nowak, K. Smardz: Hydrogen Energy, Vol. 33(2008), pp.374-380.

DOI: https://doi.org/10.1016/j.ijhydene.2007.07.022

[5] Ming Au: Materials Science and Engineering, Vol. 117(2005), pp.37-44.

[6] C. Rongeat, L. Rou: Alloys and Compounds, Vol. 404(2005), pp.679-681.

[7] B. Khorkounov, A. Gebert, Ch. Mickel, L. Schultz: Alloys and Compounds, Vol. 458(2008), pp.479-486.

DOI: https://doi.org/10.1016/j.jallcom.2007.04.007

[8] Lei Y Q, Wu Y M, et al: Z Phys. Chem., Vol. 183(1994), pp.379-383.

[9] G.Y. Lianga, D.C. Wua, Lu Lia, L.J. Huang: Journal of Power Sources, Vol. 186(2009), pp.528-531.

[10] Huaiyu Shao, Kohta Asano, Hirotoshi Enoki, Etsuo Akiba: Journal of Alloys and Compounds, Vol. 477(2009), pp.301-306.

DOI: https://doi.org/10.1016/j.jallcom.2008.11.004

[11] Xiaofeng Liu, Yunfeng Zhu, Liquan Li: Hydrogen Energy, Vol. 32(2007), pp.2450-2454.

[12] DONG Hanwu, OUYANG Liuzhang, SUN Tai, ZHU Min: Rare earths, Vol. 26(2008), pp.303-306.

DOI: https://doi.org/10.1016/s1002-0721(08)60085-x

[13] Meng Mianwu, Liu Xinyu, et al: Rare Met. (in chinese), Vol. 34(2005), pp.661-664.

[14] M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch and R. Bormann: Acta Materialia, Vol. 56(2007), pp.841-846.

DOI: https://doi.org/10.1016/j.scriptamat.2007.01.003

[15] WANG Jingfeng, GAO Shan, HU Yaobo, PAN Fusheng, TANG Aitao: Materials Review (in chinese), Vol. 22(2008), pp.102-105.

[16] CHENG Gang , GU Zhengfei, et al: Metallic Functional Materials (in chinese), Vol. 12(2005), p.16.

[17] B. Khorkounov, A. Gebert, et al: Alloys and Compounds, Vol. 416(2006), pp.110-119.

[18] Liu Changjiu, Shang Wei: Rare Met. (in chinese), Vol. 36(2007), pp.75-77.

[19] T. Z. Liu, W. Wang, T. D. Xia, et al: Rare Met. (in chinese), Vol. 34(2005), pp.112-115.

[20] C. Rongeat, M. -H. Grosjean,et al: Power Sources, Vol. 158(2006), pp.747-753.

[21] O. Friedrichs, F. Aguey-Zinsou, et al: Acta Materialia, Vol. 54(2006), pp.105-110.