Effect of Interlayer Thickness on Stress and Dielectric Properties of MgTiO3 Modified (Ba,Sr)TiO3 Multilayer Thin Films

Abstract:

Article Preview

Ba0.6Sr0.4TiO3 (BST)/MgTiO3 (MT)/ Ba0.6Sr0.4TiO3 multilayer thin films were deposited on LaNiO3 (100)/Pt/Ti/SiO2/Si (100) substrates by pulsed laser deposition. It was found that the film orientation and dielectric properties of BST/MT/BST multilayer thin films are strongly dependent on MT interlayer thickness. Pure BST thin film exhibits a (100) preferred orientation, while BST thin films with a MT interlayer exhibit a random orientation. Residual stress is relaxed dramatically due to a closer match of thermal expansion coefficients between the BST and MT interlayers. The largest figure of merit of 18.7 is achieved in the multilayer thin film with a 50-nm-thick MT interlayer, which exhibits a tunability of 30% and a lost tangent of 0.016. Dielectric constant and loss tangent decrease with increasing MT interlayer thickness due to a series dielectric dilution effect.

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Main Theme:

Edited by:

Jian-Feng Nie and Allan Morton

Pages:

1796-1799

DOI:

10.4028/www.scientific.net/MSF.654-656.1796

Citation:

S. B. Lu and Z. K. Xu, "Effect of Interlayer Thickness on Stress and Dielectric Properties of MgTiO3 Modified (Ba,Sr)TiO3 Multilayer Thin Films", Materials Science Forum, Vols. 654-656, pp. 1796-1799, 2010

Online since:

June 2010

Export:

Price:

$35.00

[1] A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, J. Venkatesh, N. Setter, Journal of Electroceramics 11 (2003) 5.

[2] P. Bao, T. J. Jackson, X. Wang, M. J. Lancaster, J. Phys. D: Appl. Phys. 41 (2008) 063001.

[3] J. F. Scott, Science 315 (2007) 954.

[4] M. W. Cole, C. V. Weiss, E. Ngo, S. Hirsch, L. A. Coryell, S. P. Alpay, Appl. Phys. Lett. 92 (2008) 182906.

[5] K. H. Yoon, J. -H. Sohn, B. D. Lee, D. H. Kang, Appl. Phys. Lett. 81 (2002) 5012.

[6] X. Chou, J. Zhai, X. Yao, Appl. Phys. Lett. 91 (2007) 122908.

[7] T. N. Lin, J. P. Chu, S. F. Wang, Mater. Lett. 59 (2005) 2786.

[8] X. H. Zhu, B. Guigues, E. Defay, M. Aid, J. Appl. Phys. 104 (2008) 074118.

[9] W. Fu, H. Wang, L. Cao, Y. Zhou, Appl. Phys. Lett. 92 (2008) 182910.

[10] E. F. Alberta, R. Guo, A. S. Bhalla, Ferroelectrics 268 (2002) 169.

[11] M. T. Sebastian, Dielectric Materials for Wireless Communications, Elsevier Science, Amsterdam, (2008).

[12] L. Gao, J. W. Zhai, X. Yao, Z. K. Xu, J. Am. Ceram. Soc. 91 (2008) 3109.

[13] S. J. Skrzypek, A. Baczmanski, W. Ratuszeka, E. Kusiorc, J. Appl. Cryst. 34 (2001) 427.

[14] Z. G. Ban, S. P. Alpay, J. Appl. Phys. 91 (2002) 9288.

[15] K. -S. Hwang, B. -A. Kang, Y. -S. Jeon, J. -H. An, B. -H. Kim, K. Nishio, T. Tsuchiya, Surface and Coatings Technology 190 (2005) 331.

[16] L. B. Duk, L. H. Ryul, Y. K. Hyun, K. D. Heon, J. Am. Ceram. Soc. 88 (2005) 1197.

[17] K. Morito, T. Suzuki, J. Appl. Phys. 97 (2005) 104107. 7.

In order to see related information, you need to Login.