A New Micromechanical Elasto-Plastic Constitutive Model for Fiber-Reinforced Composite Laminates

Abstract:

Article Preview

A micromechanical elastic-plastic bridging constitutive model is developed in this paper for accurate representation of material behavior of fiber-reinforced composite laminates. In the bridging constitutive model, elastic behavior is represented by bridging matrix elements and interaction between the average stresses in matrix with those in fibers are included. A transient plastic bridging matrix is developed to describe accurately the elastic-plastic material properties of the fiber reinforced composites, and the effects of the material parameters of matrix and fiber on the bridging matrix elements have been accounted for. The proposed constitutive model is validated against experiment investigation.

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Main Theme:

Edited by:

Jian-Feng Nie and Allan Morton

Pages:

2459-2462

DOI:

10.4028/www.scientific.net/MSF.654-656.2459

Citation:

H. S. Zhang and Y. X. Zhang, "A New Micromechanical Elasto-Plastic Constitutive Model for Fiber-Reinforced Composite Laminates", Materials Science Forum, Vols. 654-656, pp. 2459-2462, 2010

Online since:

June 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.