Synthesis and Characterization of Titanium Dioxide Nanotubes for Photocatalytic Degradation of Aqueous Nitrobenzene in the Presence of Sunlight


Article Preview

TiO2 derived nanotubes were prepared by hydrothermal treatment of TiO2 (anatase) powder in 10 M NaOH aqueous solution. The crystalline structure, band gap, and morphology of the TiO2 nanotubes were determined by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Transmission Electron microscopy (TEM) and N2 adsorption (BET) at 77 K, respectively. It was observed that the surface area of the nanotubes was increased twelve times compared with TiO2 (anatase) powder. The results demonstrated that the photocatalytic activity of TiO2 nanotubes was higher than that of TiO2 (anatase) powder. The photocatalytic activity of the nanotubes was evaluated in presence of sunlight by degradation of aqueous nitrobenzene. Complete degradation of nitrobenzene was obtained in 4 hours using TiO2 nanotubes whereas 85% degradation was observed in case of TiO2 (anatase).



Edited by:

Amir Al-Ahmed




R. J. Tayade and D.L. Key, "Synthesis and Characterization of Titanium Dioxide Nanotubes for Photocatalytic Degradation of Aqueous Nitrobenzene in the Presence of Sunlight", Materials Science Forum, Vol. 657, pp. 62-74, 2010

Online since:

July 2010




[1] A. Fujishjima and K. Honda: Nature Vol. 238 (1972), p.37.

[2] R.J. Tayade, R.G. Kulkarni and R.V. Jasra: Indust. and Engin. Chem. Research Vol. 45 (2006), p.922.

[3] R.J. Tayade, R.G. Kulkarni and R.V. Jasra; Indust. and Engin. Chem. Research Vol. 45 (2006), p.5231.

[4] P.K. Surolia, M.A. Lazar; R.J. Tayade and R.V. Jasra; Indust. and Engin. Chem. Research Vol. 47 (2008), p.5847.

[5] M. Gratzel: Nature Vol. 414 (2001), p.338.

[6] M. Gratzel: J. Photochem. Photobiol., C: Photochem. ReV. Vol. 4 (2004), p.145.

[7] S. Yangn and L. Gao: J. Am. Ceram. Soc. Vol. 87 (2004), p.1803.

[8] H. Liu and L. Gao: J. Am. Ceram. Soc. Vol. 87 (2004), p.1582.

[9] J.C. Yu, J.G. Yu, W.K. Ho; Z.T. Jiang and L.Z. Zhang: Chem. Mater. Vol. 14 (2002), p.3808.

[10] M.I. Litter: Appl. Catal. B: Environ. Vol. 23(1999), p.89.

[11] V. Brezova, A. Blazkova, L. Karpinsky, J. Groskova, B. Havlinova, V. Jorik, M. Ceppan: J. Photochem. Photobiol. A: Chem. Vol. 109, (1997), p.177.


[12] S. Ikeda, N. Sugiyama, B. Pal, G. Marci, L. Palmisano, H. Noguchi, K. Uosaki, B. Ohtani: Phys. Chem. Chem. Phys. Vol. 3 (2001), p.267.

[13] A. Fuerte, M.D. Hernandez-Alonso, A.J. Maria, A. Martinez-Arias, M. Fernandez-Garcia, J.C. Conesa and J. Soria: Chem. Commun. Vol. 24 (2001), p.2718.


[14] W. Choi, A. Termin, M.R. Hoffman: J. Phys. Chem. Vol. 98 (1994), p.13669.

[15] S. Iijima: Nature Vol. 354 (1991), p.56.

[16] N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl: Science Vol. 269 (1995), p.966.


[17] R. Tenne: Prog. Inorg. Chem. Vol. 50 (2001), p.269.

[18] M. Nath, C.N.R. Rao: J. Amer. Chem. Soc. Vol. 123 (2001), p.4841.

[19] C.N.R. Rao, M. Nath: Dalton Transactions Vol. 1 (2003), p.1.

[20] P. Hoyer: Langmuir Vol. 12 (1996), p.1411.

[21] F. Krumeich, H. -J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, R. Nesper: J. Amer. Chem. Soc. Vol. 121 (1999), p.8324.

[22] R. Asahi, Y. Taga, W. Mannstadt: A. J. Freeman, Phys. Rev. B Vol. 61 (2000), p.7459.

[23] A. Fujishima, T.N. Rao and D.A. Tryk: J. Photochem. Photobio. C Vol. 1 (2000), p.1.

[24] S.Q. Liu and A.C. Chen: Langmuir Vol. 21 (2005), p.8409.

[25] S.H. Oh, R.R. Finones, C. Daraio, L.H. Chen and S.H. Jin: Biomaterials Vol. 26 (2005), p.4938.

[26] M. Adachi, Y. Murata, I. Okada and S. Yoshikawa: J. Electrochem. Soc. Vol. 150 (2003), p.488.

[27] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Nitrobenzene; Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA, 1990; available at http: / www. atsdr. cdc. gov/taxfaq. html (accessed Dec 1990).


[28] R. J. Tayade, P. K. Suroliya, R. G. Kulkarni and R. V. Jasra: Science and Technology of Advanced Materials Vol. 8 (2007), p.455.

[29] B. D. Cullity and S. R . Stock: Elements of X-ray Diffraction, 3rd Ed. (Prentice Hall: Upper Saddle River, NJ, 2001).

[30] M. Gratzel: Heterogeneous Photochemical Electron Transfer (CRC Press: Boca Raton, FL, 1988).

[31] D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen and N. Ming: Chem. Mater. Vol. 18 (2006), p.547.

[32] Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie and H. Xu: J. Am. Chem. Soc. Vol. 125 (2003), p.12384.

[33] D. Wang, F. Zhou, Y. Liu and W. Liu: Materials Letters Vol. 62 (2008), p.1819.

[34] S. H. Lim, J. Luo, Z. Zhong, W. Ji and J. Lin: Inorg. Chem. Vol. 44 (2005), p.4124.

[35] Q. Chen, W.Z. Zhou, G.H. Du and L.M. Peng: Adv. Mater. Vol. 14 (2002), p.1208.

[36] D.V. Bavykin, V.N. Parmon, A.A. Lapkin and F.C. Walsh: J. Mater. Chem., Vol. 4 (2004), p.3370.

[37] M. Qamar , C.R. Yoon, H. J. Oh, N.H. Lee, K. Park, D.H. Kim, K.S. Lee, W.J. Lee, S.J. Kim, Catalysis Today Vol. 131 (2008), p.3.

[38] M. A. Khan, H. -T. Jung and O-B. Yang: Chem. Phys. Letters Vol. 458 (2008), p.134.