Hetero-Modulus Nanoparticles Reinforced Corundum Matrix CMC with Extreme Wear and Thermal Shock Resistances


Article Preview

A novel approach to obtain ceramic matrix composites with extreme high mechanical wear and thermal shock resistance abilities is presented. The developed corundum matrix composites were reinforced with nanoparticles, submicron fibres and whiskers of Si2ON2, SiAlON, AlN and Si3N4. These kinds of materials have several Young’s modulus simultaneously. These new alumina based ceramic matrix composites were obliged to collisions with different metallic bodies having high densities and impact speeds larger than 900 m/s at the moment of the hits. During the experiments in the places of collisions where oxygen was absent new high density „diamond-like” c-Si3N4 cubic crystals have developed with spinel structures, where nitrogen atoms were distributed in the centres of the cubes. These new spinel crystals of c-Si3N4 in the alumina matrix have extreme high dynamic strength, hardness and wear resistance, like diamond. They were fully resistance to oxygen and thermal shock at the tested temperature of 1200 oC.



Edited by:

P. J. Szabó and T. Berecz






L. A. Gömze and L. N. Gömze, "Hetero-Modulus Nanoparticles Reinforced Corundum Matrix CMC with Extreme Wear and Thermal Shock Resistances", Materials Science Forum, Vol. 659, pp. 165-170, 2010

Online since:

September 2010


[1] B. Venkataraman, G. Sundararajan: Acta Materialica Vol. 44 (1996), p.451.

[2] A. Hultman, A. K. Veimark: Evolution Vol. 4. (1998), p.25.

[3] H. Donza, R. Torrecillasa, A. H. De Azab, P. Penab and S. De Azab: Cement and Concrete Research Vol. 32 (2002), p.1755.

[4] V. Zyryanov: Interceram Vol 52 (2003), p.22.

[5] J. Csanyi, L. A. Gomze, Zs. Kover: Epitoanyag Vol. 56 (2004), p.103.

[6] I. L. Shabalin, V. M. Vishnyakov and .L. I. Shabalin, J. Eur. Ceram. Soc. Vol. 27 (2007), p.2171.

[7] A. Morikawa, T. Suzuki, K. Kikuta, A. Suda and H. Sinjo: Epitoanyag Vol 61 (2009), p.2. ■ Material composition a" □ Material composition "b.

[8] J. G. Chigvinadze, J. V. Acrivos, S. M. Ashimov, D. D. Gulamova, T. V. Machaidze and D. Uskenbaev: Epitoanyag Vol 61. (2009) p.104.

[9] V. V. Lashneva, A. V. Shevchenko and E. V. Dubnik: Steklo i Keramika Vol. 4. (2009) p.25.

[10] J. Csanyi, L. A. Gomze: Epitoanyag Vol 53. (2001), p.66.

[11] K. Katahira, Y. Watanabe, H. Ohmori and T. Kato: Int. Journal of Machine Tools & Manufacture Vol. 42 (2002), p.1307.

[12] S.N. Kulkov, N. I. Savchenko: Epitoanyag Vol. 60 (2008), p.62.

[13] A. G. Tkachev, O. N. Tkaceva; Steklo i Keramika Vol 2. (2009), p.15.

[14] I. L. Shabalin, V. M., Vishnyakov, D. J. Bull, S. G. Keens, L. F. Yamshchikov and L. I. Shabalin: J. Alloys and Compounds Vol. 472 (2009), p.373.

DOI: 10.1016/j.jallcom.2008.04.067

[15] N. I. Ershova, I. Yu. Kelina: Epitoanyag Vol. 61 (2009), p.34.

[16] K. Katahira, H. Ohmori: Epitoanyag Vol. 61 (2009) p.104.

[17] C. B. Carter, M. G. Norton: Ceramic Materials, Science and Engineering, Springer Science + Business Media, LLC., New York (2007).

[18] L. A. Gomze, L. N. Gomze, in: Proceedings of Int. Conf. XI Khariton's Readings, Extreme States of Substance; edited by DSC A. L. Mihailov, Published by FGUP RFYaTsVNIIEF, Sarov, Russia (2009), p.324.

[19] J. Csanyi, L. A. Gomze: Epitoanyag, Vol. 60 (2008), p.15.

[20] V. S. Bukanov, E. S. Lukin: Steklo i Keramika Vol. 8 (2008), p.66.

[21] J. Csanyi: Epitoanyag Vol. 61 (2009), p.6.

[22] A. Zer, r. Riedel, T. Sekine, J. E. Lowther, W. Y. Ching and I. Tanaka: Advanced Materials (FRG) Vol. 18 (2006), p.2933.

[23] L. A. Gomze, L. N. Gomze: Epitoanyag, Vol 61 (2009), p.38.

[24] M. Müller, W. Bauer and R. Knitter: Ceramics International, Vol. 35 (2009), p.38.

[25] S. H. Lee, M. Weinmann: Acta Materialica, Vol. 57 (2009), p.4374.

[26] S. Hampshire, H. K. Park, D. P. Thompson and K. H. Jack: Nature Vol. 274 (1978), p.880.

[27] G. G. Deeley, J. M. Herbert and N. C. Moore: Powder Metallurgy Vol. 8. (1961), p.145.

[28] F. L. Riley: J. Am. Ceram. Soc. Vol. 83 (2000), p.245.

[29] A. Tsuge, K. Nishida: Am. Ceram, Soc. Bull Vol. 57 (1978), p.424.

[30] F. F. Laange: J. Ceram. Soc. Japan Vol. 114 (2006), p.873.

[31] S. Hampshire: Materials Sci. Forum Vol. 606 (2009), p.27.

[32] V. V. Milyavskiy, A. V. Utkin, A. Z. Zhuk, V. V. Yakushev and V. E. Fortov: Diamond and Related Materials Vol. 14 (2005), p. (1920).

DOI: 10.1016/j.diamond.2005.08.027

[33] W. Wang, N. M. Hadfield and A. A. Wereszczak: Ceramic International Vol. 35 (2009), p.3339.

[34] X. Li, X. Jin, L. Zhang and T. Pan: Materials Science and Engineering A, Vol. 527 (2009), p.103.

[35] A. S. Yunoshev: Combustion, Explosion and Shock Waves, Vol. 40 (2004), p.370.

[36] J. K. Chen, K.L. Tang and J. T. Chang: Ceramics International, Vol. 35 (2009), p.2999.

[37] X. Zhang, Z. Wang, C. Hong, P. Hu and W. Han: Materials and Design, Vol. 30, Issue 10 (2009), p.4552.

[38] J. G. Miranda-Hernández, S. D. de la Torre and E. Rocha-Rangel: Epitoanyag, Vol. 62., (2010), p.2.

[39] H. He, T. Sekine, T. Kobayashi, H. Hirosaki and I. Suzuki: Physical Review B, Vol. 62, N. 17 (2000), p.11413.

[40] T. Sekine, T. Mitsuhashi: Appl. Phys Letters, Vol. 79 (2001), p.2719.

[41] V. V. Yakushev, A. V. Utkin and A. N. Zhukov in: Proceedings of Int. Conf. XI Khariton's Readings, Extreme States of Substance; Edited by DSc A. L. Mihailov, Published by FGUP RFYaTs-VNIIEF, Sarov, Russia (2009), p.204.

In order to see related information, you need to Login.