Sintering of B4C by Pressureless Liquid Phase Sintering

Abstract:

Article Preview

The effect of three different sintering additive systems on densification of boron carbide powder was investigated. The sintering additives were Al2O3:Y2O3, AlN:Y2O3 and BN:Y2O3 compositions. Powder mixtures were prepared with 10 vol% of sintering aids following conventional powder technology processes. Samples were sintered by pressureless sintering at 2050 °C/30min in argon atmosphere. Sintered samples were compared to a sintered B4C without sintering additive. Samples were characterized by XRD to analyze the crystalline phases after sintering and SEM to observe the microstructure and the second phase distribution. YB4 and YB2C2 were identified in all samples, indicating a reaction between Y2O3, B4C and B2O3 present at the B4C particle surface. The best densification result was achieved with Al2O3:Y2O3 additive system, showing 92.0 % of theoretical density, low porosity and 15.2 % of linear shrinkage. But this sample showed the highest weight loss.

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho

Pages:

170-175

DOI:

10.4028/www.scientific.net/MSF.660-661.170

Citation:

R. M. da Rocha and F. C. L. de Melo, "Sintering of B4C by Pressureless Liquid Phase Sintering", Materials Science Forum, Vols. 660-661, pp. 170-175, 2010

Online since:

October 2010

Export:

Price:

$38.00

[1] F. Thevenot: J. Eur. Ceram. Soc. Vol. 6 (1990), p.205.

[2] K. Schwetz, L. Sigl, F. Pfau: J. Solid. State Chem. Vol. 133 (1997), p.68.

[3] B. Champagne and R. Angers: J. Am. Ceram. Soc. Vol. 62 (1979), p.149.

[4] R. Anger and M. Beauvy: Ceram. Int. Vol. 10 (1983), p.49.

[5] J. E. Zorzi, C. A. Perottoni, and J. A. H. da Jornada: Mater. Lett. Vol. 59 (2005) p.2932.

[6] G. A. Gogotsi, Y. G. Gogotsi, D.U. Ostrovoj: J. Mater. Sci. Lett. Vol. 7 (1988), p.814.

[7] G. A. Gogotsi, O.D. Groushevsky: J. Less-Common Met. Vol. 117 (1986), p.225.

[8] H. Lee, R. F. Speyer: J. Am. Ceram. Soc. Vol. 86 (2003), p.1468.

[9] H. Lee, R. F. Speyer, W. S. Hackenberger: J. Am. Ceram. Soc. Vol. 85 (2002), p.2131.

[10] |Y. Kanno, K. Kawase, K. Nakano: J. Ceram. Soc. Jpn. Vol. 11 (1987), p.1137.

[11] R. M. Rocha, F.C. L. Melo: Mat. Sci. Forum. Vol. 591-593 (2008), p.493.

[12] R. M. Rocha, F. C. L. Melo: Pressureless Sintering of B4C –SiC Composites for Armor Application, in: proceedings of the 33rd ICACC, Daytona Beach, USA, January, (2009).

[13] S. L. Sigl: J. Eur. Ceram. Soc. Vol. 18 (1998), p.1521.

[14] T. K. Roy, C. Subramanian: Ceram. Int. Vol. 32 (2006), p.227.

[15] S. Yamada, K. Hirao, Y. Yamauchi: J. Mater. Sci. Lett. Vol. 21 (2002), p.1445.

[16] H. W. Kim, Y. H. Koh, H. E. Kim: J. Mater. Res. Vol. 15 (2000), p.2431.

[17] L. Levin, N. Frage, M. P. Dariel: Int. J. Refrat. Met. Hard. Mater. Vol. 18 (2000), p.131.

[18] H. W. Kim, Y. H. Koh, H. E. Kim: J. Am. Ceram. Soc. Vol. 83 (2000), p.2863.

[19] K. A. Schwetz,W. Grellner: J. Less-Common Met. Vol 82 (1981), p.37.

[20] H.N. Yoshimura, A. C. da Cruz, Y. Zhou, and H. Tanaka: J. Mater. Sci. Vol. 37 (2002) p.1541.

[21] V. A. Izhevskyi, J. C. Bressiani, A. H. A. Bressiani: Mater. Res. Vol. 3 (2000) p.131.

[22] M. Omori, and H. Takei: J. Mater. Sci. Vol. 23(1988), p.3744.

[23] G. J. Zhang, H. Kita, N. Kondo, T. Ohji: J. Am. Ceram. Soc. Vol. 88 (2005), p.2246.

[24] A. Goldestein, Y. Yeshurum, A. Goldenberg: J. Eur. Ceram. Soc. Vol. 27 (2007), p.695.

In order to see related information, you need to Login.