Comparation between PIII Superficial and Ceramic Coating in Creep Test of Ti-6Al-4V Alloy


Article Preview

The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of PIII superficial treatment and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190oC by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treat-ment of PIII and ceramic coating was submitted to creep tests at 600°C and 250 and 319 MPa under constant load mode. In the PIII treatment the samples was put in a vacuum reactor (76x10-3 Pa) and implanted by nitrogen ions in time intervals between 15 and 120 minutes. Yttria (8 wt.%) stabilized zirconia (YSZ) with a CoNiCrAlY bond coat was atmospherically plasma sprayed on Ti-6Al-4V substrates by Sulzer Metco Type 9 MB. The obtained results suggest the ceramic coating on Ti-6Al-4V alloy improved its creep resistance.



Materials Science Forum (Volumes 660-661)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho




D. A.P. Reis et al., "Comparation between PIII Superficial and Ceramic Coating in Creep Test of Ti-6Al-4V Alloy", Materials Science Forum, Vols. 660-661, pp. 225-228, 2010

Online since:

October 2010




[1] T. Sakai, M. Ohashi and K. Chiba: Acta Metall. Vol. 36 (1988), p.1781.

[2] M. A. Khan, R. L. Willians and D. F. Willians: Biomaterials Vol. 20 (1999), p.183.

[3] G. Welsch and A. I. Kahveci: Oxidation of High- Temperature Intermetallics (T. Grobstein and J. Doychak (eds. ), TMS, Warrendale, PA 1998).

[4] M.W. Kearns and J.E. Restall: Sixth World Conf. On titanium. Cannes, 1988. Proceeding… Les Ulis 1998. p.396.

[5] M. M. Silva, M. Ueda, L. Pichon, H. Reuther and C. M. Lepienski: Nuclear Instruments and Methods in Physics Research. B, (2007), doi: 10. 1016/j. nimb. 2007. 01. 135.

[6] M. Ueda, M. M. Silva, C. M. Lepienski, P. C. Soares Jr., J.A.N. Gonçalves and H. Reuther: Surface and Coatings Technology Vol. 201 (2007), p.4953.


[7] C. B. Mello, M. Ueda, M. M. Silva, H. Reuther, L. Pichon and C. M. Lepienski: Wear Vol. 267 (2009), p.867.

[8] D.A.P. Reis, Silva, C.R.M. Nono, M.C.A. Barboza, M.J.R., F. Piorino Neto and E.A.C. Perez: Materials at High Temperatures Vol. 22 (2006), p.449.

[9] M. J. R. Barboza, C. Moura Neto, and C.R.M. Silva: Mater. Sci. Eng. A Vol. 369 (2004), p.201.

[10] D.A.P. Reis, C.R.M. Silva, M.C.A. Nono, M.J.R. Barboza, F.; Piorino Neto, and E.A.C. Perez: Mater. Sci. Eng. A Vol. 399 (2005), p.276.

[11] M.J.R. Barboza, E.A. C Perez, M.M. Medeiros, D.A.P. Reis, M.C.A. Nono, F. Piorino Neto, C.R.M. Silva: Mater. Sci. Eng. A Vol. 428 (2006), p.319.

[12] D.A.P. Reis, C. Moura Neto, C.R.M. Silva, M.J.R. Barboza, and F. Piorino Neto: Mater. Sci. Eng. A Vol. 486 (2008), p.421.

[13] American Society for Testing and Materials (ASTM). E139-83. Standard practice for conducting creep, creep-rupture and stress-rupture tests of metallic materials. Philadelphia, (1995).


[14] A. Sarkissian, V. A. Bourque, R. Paynter and R.G. St-Jacues: Stansfield B.L. Surface and Coating Technology Vol. 98 (1998), p.1336.

[15] A. Loinaz, M. Rinner, F. Alonso and J.I. Oñate: Ensinger, W. Surface and coatings technology Vols. 103-104 (1998), p.262.