Influence of the External Heating Type in the Morphological and Structural Characteristics of Alumina Powder Prepared by Combustion Reaction

Abstract:

Article Preview

The aim of this work is to evaluate the influence of the external heating in the morphological and structural characteristics of the alumina powder prepared by combustion reaction. It was evaluated different types of external heating: muffle oven, microwave oven and ceramic plate with electrical spiral resistance. The powders were prepared according to the propellants and explosives theory, using urea in the stoichiometric proportion (Φe = 1). During the synthesis parameters such as flame combustion time and temperature were measured. The structural and morphological characteristics of the powders were evaluate by XRD, particle size distribution, SEM and nitrogen adsorption (BET). The results showed the production of -alumina as unique phase and formed by agglomerates with irregular plate shape of thin particles for all studied conditions. The powders prepared by electrical oven presented small particle size, with narrow agglomerates size distribution.

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Edited by:

Lucio Salgado and Francisco Ambrozio Filho

Pages:

58-62

DOI:

10.4028/www.scientific.net/MSF.660-661.58

Citation:

V.V. Cordeiro et al., "Influence of the External Heating Type in the Morphological and Structural Characteristics of Alumina Powder Prepared by Combustion Reaction", Materials Science Forum, Vols. 660-661, pp. 58-62, 2010

Online since:

October 2010

Export:

Price:

$38.00

[1] S. Bhaduri, E. Zhou and S.B. Bhaduri: NanoShuctured Materials Vol. 7 (1996), p.487.

[2] K. Ada, Y. Sarıkaya, T. Alemdaroglu and M. Önal: Ceram. International Vol. 29 (2003), p.513.

[3] J. Li, Y. Pan, C. Xiang, Q. Ge and J. Guo: Ceram. International Vol. 32 (2006), p.587.

[4] N. Bahlawane and T. Watanabe: J. Am. Ceram. Soc. Vol. 83 (2000), p.2324.

[5] A. J. Fanelli and J. V. Burlew: J. Am. Ceram. Soc. Vol. 69 (1986), p. C-174.

[6] J. G. Li and X. D. Sun: Acta Mater. Vol. 48 (2000), p.3103.

[7] N. L. Freitas, E. Fagury-Neto, H. L. Lira, L. Gama, R. H. G. A. Kiminami and A. C. F. M. Costa: Mater. Sci. Forum. Vols. 530-531 (2006), p.631.

DOI: 10.4028/www.scientific.net/msf.530-531.631

[8] A. C. F. M. Costa, M. R. Morelli and R. H. G. A. Kiminami in: Combustion Synthesis Processing of Nanoceramics, edited by T. -Y. Tseng and H. S. Nalwa, Vol. 1 of Handbook of Nanoceramics and Their Based Nanodevices, chaper 14: Americam Scientific Publishers (2007).

[9] A. C. F. M. Costa, E. Tortella, M. R. Morelli, M. Kaufman and R. H. G. A. Kiminami: J. Mater. Sci. Vol. 37 (2002), p.3569.

[10] T. Mimani and K. C. Patil: Mater. Phys. Mech. Vol. 4 (2001), p.134.

[11] R. Jain, K. C. Adiga and V. R. Pai Verneker: Combust. Flame Vol. 40 (1981), p.71.

[12] H. P. Klung and L. E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, Wiley, New York, (1997), p.637.

[13] J. S. Reed: Principles of ceramics processing. 2ª ed. (1995), p.127.

[14] R. H. G. A. Kiminami, M. R. Morelli, D. C. Folz and D. E. Clark: Am. Cer. Soc. Bull. Vol. 70 (2000), p.63.

[15] F. F. Lange: Rockwell International Science Center, Am. Ceram. Soc. 67 (1989), p.83.

In order to see related information, you need to Login.