Self-Sustained Fracture Waves in Soda-Lime Glass

Abstract:

Article Preview

High-speed framing photography in conjunction with circularly polarised light has been employed to monitor qualitatively the state of residual stress in Prince Rupert’s drops of soda-lime glass undergoing disintegration by a self-sustained fracture wave in the glass drops. It is revealed that the fracture wave through a Prince Rupert’s drop is driven by the residual stress in the drop, with the propagation speed of the fracture wave being (1700 ± 100) ms-1, which is close to the terminal speed of individual cracks in the soda-lime glass, but is much smaller than the longitudinal wave speed of 5300 ms-1 in the glass. These observations support our recently reported observations and also give support to our conclusions that the fracture wave speed of a self-sustained fracture wave is equal to the terminal speed of individual cracks in the glass. Some preliminary observations from fracture waves in Prince Rupert’s drops of a lead oxide glass are also described, which show that in Prince Rupert’s drops of the lead oxide glass the fracture wave is also self-sustained and it travels through the drop at a steady and stable speed of (1300 ± 100) ms-1, which is also considerably smaller than the longitudinal wave speed of 4800 ms-1 in the lead glass. A brief comment is also made on the fracture waves observed by other workers in brittle oxide glasses and solids generated by plate impacts and shock waves.

Info:

Periodical:

Edited by:

M. Munawar Chaudhri

Pages:

95-104

DOI:

10.4028/www.scientific.net/MSF.662.95

Citation:

M. M. Chaudhri "Self-Sustained Fracture Waves in Soda-Lime Glass", Materials Science Forum, Vol. 662, pp. 95-104, 2011

Online since:

November 2010

Export:

Price:

$35.00

[1] H. Eyring, R. E. Powell, G. H. Duffey and R. B. Parlin: Chem. Rev., Vol. 45 (1949), p.69.

[2] J. Taylor: Detonation in Condensed Explosives (The Clarendon Press, Oxford 1952) chapter VI.

[3] L. A. Galin and G. P. Cherepanov: Sov. Phys. Doklady, Vol. 11 (1966) p.267.

[4] S. Chandrasekar and M. M. Chaudhri: Philos. Mag. B, Vol. 70 (1994) p.1195.

[5] M. Chown: New Scientist (11th Feb. 1995) p.23.

[6] M. M. Chaudhri: Philos. Mag. Lett., Vol. 78 (1998) p.153.

[7] H. Schardin, in: Fracture, edited by B. L. Averbach, B. T. Hahn and D. A. Thomas, John Wiley, London (1959) pp.297-330.

[8] M. M. Chaudhri and S. M. Walley: Philos. Mag. A Vol. 37 (1978) p.153.

[9] M. M. Chaudhri and Chen Liangyi: Nature Vol. 320 (1986) 48.

[10] M. M. Chaudhri: Phy. Stat. Solidi A Vol. 206 (2009) p.1410.

[11] D. G. Holloway: The Physical Properties of Glass (Wykeham Publications, London 1973) p.40.

[12] CRC Handbook of Chemistry and Physics 87th Edition, Editor in Chief D. R. Lide (Taylor and Francis, London 2006 - 2007) pp.10-250.

[13] E. H. Yoffe: Philos. Mag. Vol. 42 (1951), p.739.

[14] M. Dufour: Philos. Mag. Vol. 37 (1869), p.478.

[15] M. A. Grinfeld, S. E. Schoenfeld and T. W. Wright: Appl. Phys. Lett. Vol. 88 (2006) art. 104102.

[16] N. S. Brar, S. J. Bless and Z. Rozenberg: Appl. Phys. Lett. Vol. 59 (1992) p.3396.

[17] S. V. Rasorenov, G. I. Kanel, V. E. Fortov and M. M. Abeschov: High Press. Res. Vol. 6 (1991) p.225.

[18] J. C. F. Millett and N. K. Bourne: J. Apply. Phys. Vol. 95 (2004) p.4681.

[19] N. K. Bourne, J. Millett, Z. Rosenberg and N. Murray: J. Mech. Phys. Solids Vol. 46 (1998) p.1887.

[20] G. I. Kanel, E. B. Zaretsky, A. M. Rajendran, S. V. Razorenov, A. S. Savinykh and V. Paris: Intl. J. plasticity Vol. 25 (2009) p.649.

In order to see related information, you need to Login.