Synthesis and Characterization of the PANI/ITO Conducting Nanocomposites


Article Preview

The PANI/ITO conducting nanocomposites have been synthesized by in-situ polymerization. The obtained nanocomposites were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared. Electrical conductivity measurements on the samples pressed into pellets showed that the maximum conductivity attained 2.0 ± 0.05 S/cm for PANI/ITO nanocomposites, at ITO doping concentration of 10 wt%. The results of the present work may provide a simple, rapid and efficient approach for preparing PANI/ITO nanocomposites.



Materials Science Forum (Volumes 663-665)

Edited by:

Yuan Ming Huang




B. J. Zhu et al., "Synthesis and Characterization of the PANI/ITO Conducting Nanocomposites", Materials Science Forum, Vols. 663-665, pp. 542-545, 2011

Online since:

November 2010




[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

[2] M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987).

[3] Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, Norwich, NY (2004), in press.

[4] G. Henkelman, G. Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).

[5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

[6] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).

[7] Information on.

[1] C. Decker: Macromol. Rapid Comm., Vol. 23 (2003), p.1067.

[2] B.T. Hong, K.S. Shin and D.S. Kim: J. Appl. Poly. Sci., Vol. 98 (2005), p.1180.

[3] Y. Morii, T. Shin, F. Matsukawa, K. Haruna and K. Teramoto: Electronics. Commun. Japn., Vol. 83 (2000), p. (2000)21.

[1] P. K. Singh, K. W. Kim and H. W. Rhee: Synth. Met. Vol. 159 (2009), p.1538.

[2] S. Paul, N. N. Chavan and S. Radhakrishnan: Synth. Met. Vol. 159 (2009), p.415.

[3] S. W. Phang, T. Hino, M. H. Abdullah and N. Kuramoto: Mater. Chem. Phys. Vol. 104 (2007), p.327.

[4] M. Rohwerder, A. Michalik: Electrochim. Acta. Vol. 53 (2007), p.1300.

[5] B. S. Kim, K. T. Lee and P. H. Huh: Synth. Met. Vol. 159 (2009), p.1369.

[6] Y. P. Li, Y. X. Xiang, X. W. Dong, J. Q. Xu, F. Ruan and Q. Y. Pan: J. Solid State Chem. Vol. 182 (2009), p. (2041).

[7] R. A. Gilstrap, C. J. Capozzi, C. G. Carson, R. A. Gerhardt and C. J. Summers: Adv. Mater. Vol. 20 (2008), p.4163.

[8] J. H. Ba, D. F. Rohlfing, A. Feldhoff, T. Brezesinski, I. Djerdj, M. Wark and M. Niederberger: Chem. Mater. Vol. 18 (2006), p.2848.

DOI: 10.1021/cm060548q

[9] L. L. Yang, X. D. He and F. He: Mater. Lett. Vol. 62 (2008), p.4539.

[10] S. Shrestha, C.M.Y. Yeung, F. Marken, C.E. Mills and S.C. Tsang: Sensor. Actuat. B-Chem. Vol. 123 (2007), p.400.

[11] K. K Makhija, A. Ray, R.M. Patel, U.B. Trivedi and H.N. Kapse: B. Mater. Sci. Vol. 28 (2005), p.9.

[12] V. Georgieva, M. Ristov: Sol. Energ. Mat. Sol. C. Vol. 73 (2002), p.67.

[13] Y. Y. Wang, X.L. Jing, J.H. Kong: Synth. Met. Vol. 157 (2007), p.269.

[14] B. K. Sharma, A. K. Gupta, N. Khare, S. K. Dhawan and H. C. Gupt: Synth. Met. Vol. 159 (2009), p.391.

[15] Q. W. Tang, X. M. Sun and Q. H. Li: J. Mater. Sci. Vol. 44 (2009), p.849.

Fetching data from Crossref.
This may take some time to load.