In Vitro Corrosion and Haemocompatibility of Bulk Nanocrystalline 304 Stainless Steel by Severe Rolling

Abstract:

Article Preview

Bulk nanocrystalline 304 stainless steel (nanocrystalline 304ss) discs had been successfully prepared by the commercial microcrystalline 304 stainless steel (microcrystalline 304ss) plate using severe rolling technique. Micro-hardness was measured to reveal the different mechanical behavior after the severe plastic deformation. The electrochemical corrosion resistance and ion release behavior after immersion of the samples were investigated in Hank’s solution for its potential use as implant and orthodontic appliance in body. Furthermore, murine fibroblast cells were indirectly employed to detect cytotoxicity by co-incubation with the extraction from the given materials. Haemocompatibility, consisting of hemolysis test and adhesion of the platelets, was also measured with fresh human whole blood and platelet-rich plasma respectively. Polarization resistance trials indicate that nanocrystalline 304ss is more corrosion resistant in the Hank’s solution, with lower current density and superficial corrosion morphologies. The release values of the biotoxic ions after immersion do not exceed the set limit and turn to be well below the critical value necessary to induce allergy and below daily dietary intake level. Cellular interaction is observed via the proliferated feature of the cell line. Hemolysis and platelet adhesion results elucidates that nanocrystalline 304ss is biological and hematologic compatible.

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Edited by:

Jing Tao Wang, Roberto B. Figueiredo and Terence G. Langdon

Pages:

1113-1118

Citation:

F. L. Nie et al., "In Vitro Corrosion and Haemocompatibility of Bulk Nanocrystalline 304 Stainless Steel by Severe Rolling", Materials Science Forum, Vols. 667-669, pp. 1113-1118, 2011

Online since:

December 2010

Export:

Price:

$38.00

[1] J.A. Disegi, L. Eschbach: Injury Vol. 31 (2000), p.2.

[2] S.V. Bhat: Biomaterials (Alpha Science International Ltd, Pungbourne England 2002).

[3] D.J. Blackwood and B.P. Pereira: Journal of Materials Science: Materials in Medicine Vol. 15 (2004), p.755.

[4] A. Verstrynge, J.V. Humbeeck and G. Willems: American Journal of Orthodontics and Dentofacial Orthopedics Vol. 130 (2006), p.460.

[5] H.J. Breme, V. Biehl and J.A. Helsen, in: Metals and Implants, edited by H.J. Breme, V. Biehl and J.A. Helsen, page 37 of Metals as Biomaterials, Chichester Wiley Publishers (1998).

[6] Y.C. Tang, S. Katsuma, S. Fujimoto and S. Hiromoto: Acta BiomaterialiaVol. 2 (2006), p.709.

[7] R. Nishimura and Y. Maeda: Corrosion Science Vol. 45 (2003), p.1847.

[8] Y.B. Ren, K. Yang and B.C. Zhang: Materials Letters Vol. 59 (2005), p.1785.

[9] R.W. Fuller, J.Q. Ehrgott Jr., W.F. Heard, S.D. Robert, R.D. Stinson, K. Solanki and M.F. Horstemeyer: Failure Analysis Vol. 15 (2008), p.835.

DOI: https://doi.org/10.1016/j.engfailanal.2007.11.001

[10] T.J. Webster, in: Nanostructured Materials, edited by Ying Jackie Y, Academic Press (2001).

[11] G.A. Crawford, N. Chawla, K. Das, S. Bose and A. Bandyopadhyay: Acta Biomaterialia Vol. 3 (2007), p.359.

[12] H. Gleiter: Prog. Mater. Sci. Vol. 33 (1989), p.223.

[13] D. Kshang, J. Lu, C. Yao, K.M. Haberstroh and T.J. Webster: Biomaterials Vol. 29 (2008), p.970.

[14] K. Long and S.G. Wang, China Patent ZL01128256. 8. (2005).

[15] ASTM A240M-08a Annual book of ASTM standards. (Philadephia, Pennsylvania, USA 2004).

[16] ASTM-G31-72. Annual book of ASTM standards. (Philadephia, Pennsylvania, USA 2004).

[17] F.L. Nie, Y.F. Zheng, Y. Cheng, S.C. Wei and R. Z. Valiev: Materials Letters Vol. 64 (2010), p.983.

[18] X.N. Gu, Y.F. Zheng, Y. Cheng, S.P. Zhong and T.F. Xi: Biomaterials Vol. 30 (2009), p.484.

[19] N. Li, Y. Li, S.G. Wang and F.H. Wang: Electrochimica Acta Vol. 52 (2006), p.760.

[20] N. Li, Y. Li, S.G. Wang and F.H. Wang: Journal of Chinese Society for Corrosion and Protection Vol. 27 (2007), p.80.

[21] S.G. Wang, C.B. Shen, K. Long, Y. Yang, F.H. Wang and Z.D. Zhang J. Phys. Chem. B Vol. 109 (2005), p.2499.

[22] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

[23] Standard terminology relating to corrosion and corrosion testing G15-07. In annual book of ASTM standard, Vol. 03, Corrosion of metals; Wear and erosion (2007).

[24] A. Doran, F.E. Law, M.J. Allen and N. Rushton: Biomaterials Vol. 19 (1998), p.751.

[25] E. Waleed, W. Ikuya and K. Mari: Dental Materials Vol. 25 (2009), p.976.

[26] K.T. Oh and K.N. Kim: Eur. J. Orthod. Vol. 27 (2005), p.533.

[27] A. Yamamoto, R. Honma and M. Sumita: Journal of biomedical materials research Vol. 39 (1998), p.331.

[28] Commission Directive2004/96/EC Official Journal of the European Union L301/51-52 (2004).

Fetching data from Crossref.
This may take some time to load.