Evolution of Adiabatic Shear Band in Ultra-Fine-Grained Iron under Dynamic Shear Loading

Abstract:

Article Preview

Ultra-fine-grained (UFG)/Nanocrystalline (NC) materials usually show reduced strain hardening and limited ductility due to formation of adiabatic shear band (ASB) under dynamic loading. In the present study, evolution of ASB in UFG Fe under dynamic shear loading was investigated. The UFG Fe was processed by equal-channel angular pressing (ECAP) via route Bc. After 6 passes, the grain size of UFG Fe reaches ~ 600 nm, as confirmed by means of Electron Back Scatter Diffraction (EBSD). Examination of micro-hardness and grain size of UFG Fe as a function of post-ECAP annealing temperature shows a transition from recovery to recrystallization at 500 0C. The high-strain-rate response of UFG Fe was characterized by hat-shaped specimen set-ups in Hopkinson bar experiments. The characteristics of ASB as a function of shear displacement, such as thickness of shear band and micro-hardness inside the shear band, were examined by SEM and Vickers micro-indentation respectively.

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Edited by:

Jing Tao Wang, Roberto B. Figueiredo and Terence G. Langdon

Pages:

761-765

DOI:

10.4028/www.scientific.net/MSF.667-669.761

Citation:

F. P. Yuan and X. L. Wu, "Evolution of Adiabatic Shear Band in Ultra-Fine-Grained Iron under Dynamic Shear Loading", Materials Science Forum, Vols. 667-669, pp. 761-765, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.