Structure Evolution and Deformation Mechanisms in Ultrafine-Grained Aluminum under Tension at Room Temperature

Abstract:

Article Preview

Deformation mechanisms occurring by tension of ultrafine-grained aluminum processed by equal-channel angular pressing at room temperature are investigated using comparative study of the microstructure before and after tensile testing as well as deformation relief on the pre-polished surface of the sample tested. Deformation behavior and structure evolution during tension suggest development of grain boundary sliding in addition to intragrain dislocation slip. Contribution grain boundary sliding to the overall deformation calculated using the magnitude of shift of grains relative to each other is found to be ~40%.

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Edited by:

Jing Tao Wang, Roberto B. Figueiredo and Terence G. Langdon

Pages:

915-920

DOI:

10.4028/www.scientific.net/MSF.667-669.915

Citation:

K. Ivanov and E. V. Naydenkin, "Structure Evolution and Deformation Mechanisms in Ultrafine-Grained Aluminum under Tension at Room Temperature", Materials Science Forum, Vols. 667-669, pp. 915-920, 2011

Online since:

December 2010

Export:

Price:

$35.00

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progr. Mat. Sci. Vol. 45 (2000), p.103.

[2] Y.T. Zhu, T.G. Langdon: Mat. Sci. Eng. A Vol. 409 (2005), p.234.

[3] R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, et al.: Acta Metal. Mater. Vol. 42 (1994), p.2467.

[4] A. Vinogradov, S. Hashimoto, V. Patlan, et al.: Mat. Sci. Eng. A Vol. 319-321 (2001), p.862.

[5] G.P. Grabovetskaya, K.V. Ivanov, Y.R. Kolobov: Ann. Chim. Sci. Mat. Vol. 27 (2002), p.89.

[6] K. V. Ivanov and E. V. Naidenkin: Rev. Adv. Mater. Sci. Vol. 25 (2010), p.176.

[7] K. V. Ivanov and E. V. Naidenkin: Russian Physics Journal Vol. 52 (2009), p.1030.

[8] N. Q. Chinh, P. Szommer, T. Csanadi, T.G. Langdon: Mat. Sci. Eng. A Vol. 434 (2006), p.326.

[9] I. Sabirov, Y. Estrin, M.R. Barnett, et al.: Acta Mat. Vol. 56 (2008), p.2223.

[10] J. May, H.W. Hoppel, M. Goken: Scripta Mat. Vol. 53 (2005), p.189.

[11] A. Vevechka-Priftaj, A. Bohner, J. May, et al.: Mat. Sci. Forum Vols. 584-586 (2008), p.741.

[12] R.Z. Valiev, I.V. Alexandrov: Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Russia 2000). (in Russian).

[13] F. J. Humphreys: J. Mater. Sci. Vol. 36 (2001), p.3833.

[14] T.G. Langdon: J. Mater. Sci. Vol. 41 (2006), p.597.

[15] I. Saxl, V. Sklenicka, L. Ilucova, et al: Mat. Sci. Eng. A Vol. 503 (2009), p.82.

[16] P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang: Scripta Mat. Vol. 52 (2005), p.265.

[17] R. Kapoor, P.S. De and R.S. Mishra: Mat. Sci. Forum Vols. 633-634 (2010), p.165.

[18] R.Z. Valiev and T. G. Langdon: Progr. Mat. Sci. Vol. 51 (2006), p.881.

[19] O. Kaibyshev: Supeasticity in metals, intermetallics and ceramics (Springer, Germany 1992).

In order to see related information, you need to Login.