Thermal Stability of Microstructure of Aluminide Layer Deposited by CVD Method on CMSX 4 Nickel Base Superalloy


Article Preview

In the paper the aluminide layer was deposited by CVD method on the CMSX 4 single crystal nickel base alloy. The aluminizing process was carried out at the 1050 °C during 8 h. The chemical vapor deposition process was performed by means of AlCl3 aluminum chloride. The effects of aluminizing were verified in microscopic examination (microstructure and depth layer) and chemical composition on the surface and cross-section of aluminide layer. The oxidation resistance in the air atmosphere at the 1100 °C during 1000 h was a criterion of efficiency of CVD process. The hardness distribution on the cross-section aluminide layer before and after oxidation test was investigated. The parabolic mass change was observed during oxidation. Under oxidation test during 120 h on the grain size of NiAl phase was observed the phase transformation β NiAl →Ni3Al. The increase of oxidation time causes decreasing of substrate hardness and stabilization of Topologically Closed Packed phases.



Edited by:

Maria Richert




M. Yavorska and J. Sieniawski, "Thermal Stability of Microstructure of Aluminide Layer Deposited by CVD Method on CMSX 4 Nickel Base Superalloy", Materials Science Forum, Vol. 674, pp. 89-96, 2011

Online since:

February 2011




[1] Hernas A.: Żarowytrzymałość stali i stopów. Wydawnictwo Politechniki Śląskiej, Gliwice (1999).

[2] Swadźba L., Hetmańczyk M., Mendala B.: Problemy ochrony przed korozją wybranych elementów silników lotniczych. Ochrona przed korozją, 4 (2006), 148-152.


[3] Tamarin Y.: Protective coatings for turbine blades. ASM International. USA (2002).

[4] Yang S.L., Wang F.H., Niu Y., Wu W.T.: Isothermal oxidation of ß-NiAl alloy and sputtered coating at 1000 ºC in air. Material Science Forum, 369-372 (2001) 361-368.


[5] Zielińska M., Sieniawski J., Yavorska M., Motyka M.: Influence of chemical composition of nickel based superalloy on the formation of aluminide coatings. Archives of Materials Science and Engineering, (w recenzji).


[6] Bouchaud B., Balmain J., Pedraza F.: Cyclic and isothermal oxidation at 1100 ºC of a CVD aluminised directionally solidified Ni superalloy. Oxidation Metals 69 (2008) 193–210.


[7] Yavorska M., Sieniawski J.: Właściwości użytkowe warstwy aluminidkowej wytworzonej w procesie CVD na nadstopie niklu Inconel 713 LC. Mat. Szkoły Inżynierii Materiałowej, Kraków-Krynica (2009).

[8] Yavorska M., Zielińska M., Sieniawski J.: Mikrostruktura oraz odporność na utlenianie izotermiczne warstwy aluminidkowej wytworzonej w niskoaktywnym procesie CVD na podłożu z nadstopu Inconel 713 LC. Archiwum Technologii Maszyn i Automatyzacji, 30 ( w recenzji ).

[9] Chen J., Little J.: Degradation of the platinum aluminide coating on CMSX 4 at 1100 ºC. Surface & Coating Technology, 92(1997), 69-77.


[10] Reid M., Pomeroy M., Robinson J.: Microstructural instability in coated single crystal superalloys, Journal of Materials Processing Technology, 153–154 (2004), 660–665.


[11] Mua N., Liua J., Byeona J., Sohna Y., Navab Y.: Long-term oxidation and phase transformations in aluminized CMSX-4 superalloys. Surface & Coatings Technology, 188–189 (2004), 27– 34.


[12] Caron P, Khan T.: Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerospace Science Technology, 3(8) 1999, 513–23.


[13] Wang C., Chen S., Microstructure and cyclic oxidation behavior of hot dip aluminized coating on Ni-base superalloy Inconel 718. Surface & Coatings Technology, 201 (2006), 3862–3866.


Fetching data from Crossref.
This may take some time to load.