Reduction of the Surface Density of Single Shockley Faults by TCS Growth Process

Abstract:

Article Preview

Spatially resolved micro-photoluminescence has been used to study the Single Shockley faults surface density and properties on 4H-SiC epitaxial layers. The improvement of quality of epitaxial layers due to the chemical vapor deposition process has been studied by measuring the reduction of mean density of Single Shockley faults. The change of faults density has been correlated to the different precursor gas used for the growth. In fact trichlorosilane has been used instead of silane. The change of precursor led to two different advantages: the reduction of basal plane dislocation surface density and the capability to increase the growth rate of the process. Both these features allow reducing the density of Single Shockley faults.

Info:

Periodical:

Materials Science Forum (Volumes 679-680)

Edited by:

Edouard V. Monakhov, Tamás Hornos and Bengt. G. Svensson

Pages:

67-70

DOI:

10.4028/www.scientific.net/MSF.679-680.67

Citation:

A. Canino et al., "Reduction of the Surface Density of Single Shockley Faults by TCS Growth Process", Materials Science Forum, Vols. 679-680, pp. 67-70, 2011

Online since:

March 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.