Stress Analysis in UMo-Al Fuel Using X-Ray Diffraction

Abstract:

Article Preview

UMo-Al specimens are analyzed using X-ray diffraction techniques. One specimen was partially irradiated using a heavy ion beam 127I. Another specimen was thermally annealed 2h at 400°C. Those treatments result in the formation of an interaction layer between UMo particles and Al matrix. UMo, Al and UAl3 phases are identified in the treated specimen using X-ray diffraction. Only aluminium phase exhibits a crystallographic fiber texture, the other phases having an isotropic crystallographic texture. X-ray stress analyses are performed. After irradiation, stress analyses show that UMo phase is in a compressive stress state whereas the stress level in the formed UAl3 in the interaction layer is not that high.

Info:

Periodical:

Edited by:

Paolo Scardi and Cristy L. Azanza Ricardo

Pages:

420-425

DOI:

10.4028/www.scientific.net/MSF.681.420

Citation:

R. Kubler et al., "Stress Analysis in UMo-Al Fuel Using X-Ray Diffraction", Materials Science Forum, Vol. 681, pp. 420-425, 2011

Online since:

March 2011

Export:

Price:

$35.00

[1] O. Boquet, MSc Arts et Metiers ParisTech, (2009).

[2] H. Palancher, N. Wieschalla, P. Martin, R. Tucoulou, C. Sabathier, W. Petry, J.F. Berar, C. Valot and S. Dubois, Uranium-molybdenum nuclear fuel plates behaviour under heavy ion irradiation: an X-ray diffraction analysis , Journal of Nuclear Materials, 2009, 385, Issue 2, 449-455.

DOI: 10.1016/j.jnucmat.2008.12.032

[3] M. K. Meyer, G. L. Hofman, S. L. Hayes, C. R. Clark, T. C. Wiencek, J. L. Snelgrove, R. V. Strain, K. -H. Kim Low-temperature irradiation behavior of uranium–molybdenum alloy dispersion fuel, J. Nuclear Mater., 2002, 34, 221-236.

DOI: 10.1016/s0022-3115(02)00850-4

[4] H. Palancher, P Martin, V Nassif, R. Tucoulou, O. Proux, J.L. Hazemann, O. Tougait, E. Lahéra, F. Mazaudier, C. Valot and S. Dubois, Evidence for the presence of U–Mo–Al ternary compounds in the U–Mo/Al interaction layer grown by thermal annealing: a coupled micro X-ray diffraction and micro X-ray absorption spectroscopy study, J. Appl. Cryst, 2007, 40, 1064-1075.

DOI: 10.1107/s0021889807040010

[5] E. Perez, N. Hotaling, A. Ewh, D.D. Keiser, Y.H. Sohn, Def. Diff. For. 266 (2007), 149.

[6] C.K. Varela, M. Mirandou, S. Aricó, S. Balart, L. Gribaudo, in: Proceedings of the RRFM and IGORR, March 11–15, Centre de Congrès, Lyon, France, 2007, p.135.

[7] M.I. Mirandou, S.N. Balart, M. Ortiz, M.S. Granovsky, J. Nucl. Mater. 323 (2003).

[8] F. Mazaudier, C. Proye, F. Hodaj, in: Proceedings of the RRFM, April 30–May 3, Sofia, Bulgaria, 2006, p.87.

[9] D.D. Keiser Jr., C.R. Clark, M.K. Meyer, Scr. Mater. 51 (2004) 893.

[10] H.J. Ryu, Y.S. Kim, G.L. Hofman, J. Nucl. Mater., 385, (2009), 623.

[11] N.V. Chandra Shekar, P. Ch. Sahu, M. Rajagopalan, M. Yousuf, K. Govinda Rajan, Anomalous compression in UAl3- an experimental and computational study, J. Phys. : Condens. Matter 9 (1997), 5867-5874.

DOI: 10.1088/0953-8984/9/27/016

[12] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, (1997).

In order to see related information, you need to Login.