The Effect of Grain Boundary State on Deformation Process Development in Nanostructured Metals Produced by the Methods of Severe Plastic Deformation


Article Preview

In this review the investigations of deformation process development are discussed which were carried out by tension and creep in the temperature range Т<0.4Tm (here Тm is the absolute melting point of material) for nanostructured metals produced by the methods of severe plastic deformation. The contribution of grain boundary sliding to the total deformation in the above temperature interval is also considered. An analysis is made of the effect of grain size and grain boundary state on the evolution of grain boundary sliding and cooperative grain boundary sliding in nanostructured metals.



Edited by:

Yonghao Zhao




E. V. Naydenkin et al., "The Effect of Grain Boundary State on Deformation Process Development in Nanostructured Metals Produced by the Methods of Severe Plastic Deformation", Materials Science Forum, Vol. 683, pp. 69-79, 2011

Online since:

May 2011




[1] Yu.R. Kolobov, R.Z. Valiev, G.P. Grabovetskaya, A.P. Zhilyaev, E.F. Dudarev, K.V. Ivanov M.B. Ivanov, O.A. Kashin and E.V. Naidenkin: Grain boundary diffusion and properties of nanostructured materials (Nauka, Russia 2001). (in Russian).

DOI: 10.1016/s1359-6462(00)00699-0

[2] N.I. Noskova, R.R. Mulyukov: Submicrocrystalline and nanocrystalline metals and alloys (UrO RAN, Russia 2003). (in Russian).

[3] Y.T. Zhu, T.G. Langdon: Mat. Sci. Eng. A Vol. 409 (2005), p.234.

[4] N. Q. Chinh, P. Szommer, T. Csanadi, T.G. Langdon: Mat. Sci. Eng. A Vol. 434 (2006), p.326.

[5] A. Vinogradov, S. Hashimoto, V. Patlan, K. Kitagawa: Mat. Sci. Eng. A Vol. 319-321 (2001), p.862.

[6] Yu.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, M.B. Ivanov: Interface Sci. Vol. 10 (2002), p.31.

[7] A.M. Farghlli, Y. Li: Mat. Sci. Eng. A Vol. 298 (2001), p.1.

[8] E.V. Naydenkin, G.P. Grabovetskaya: Mat. Sci. Forum Vol. 633-634 (2010), p.107.

[9] H.J. Frost, M.F. Ashby: Deformation mechanism maps (Pergamon Press, 1982).

[10] B. Caiet, Q.P. Kong, L. Lu, K. Lu: Mater. Sci. Eng. A Vol. 286 (2000), p.188.

[11] Yu.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev, R.Z. Valiev: Scripta Mat. Vol. 44 (2001), p.873.

[12] Yu.R. Kolobov, G.P. Grabovetskaya, Y.T. Zhu, K.V. Ivanov, N.V. Girsova, O.V. Zabudtchenko., in: TMS Ultrafine Grain Materials IV,. Proceedings of Conference NanoSPD–IV, edited. by Y.T. Zhu et al., San Antonio, USA (2006).

[13] E.F. Dudarev, G.P. Pochvalova, Yu.R. Kolobov, E.V. Naydenkin, O.A. Kashin: Mater. Sci. Eng. A Vol. 503 (2009), p.58.

[14] S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee: Lett. to Nature Vol. 398 (1999), p.684.

[15] E.V. Naydenkin, I.V. Ratochka: Mat. Sci. Forum Vol. 584-586 (2008), p.159.

[16] D.G. Morris: Mechanical behaviour of nanostructured materials (Trans. Tech. Publication, Switzerland 1998).

[17] V.A. Pozdnyakov, A.M. Gleser: Fizika tverdogo tela Vol. 44 (2002), p.705 (in Russian).

[18] Z. Shan, E.A. Stech, S.M.K. Wiezorek: Sci. Vol. 305 (2004), p.654.

[19] J. Shi, M.A. Zikry: Mat. Sci. Eng. A Vol. 520 (2009), p.121.

[20] I. Kaur, Yu. Mishin, W. Gust: Fundamentals of grain and interface boundary diffusion (John Wiley & Sons Ltd., England 1995).

[21] V.N. Chuvildiyev: Non-equilibrium grain boundaries in metals. Theory and Application (Fizmatlit, Russia 2004). (in Russian).

[22] G.P. Grabovetskaya, I.P. Mishin, I.V. Ratochka, et al.: Tech. Phys. Lett. Vol. 34 (2008), p.36.

[23] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mat. Sci. Vol. 45 (2000), p.103.

[24] O.V. Mishin, D. Juul Jensen, N. Hansen, in: Proceedings of the 21st Risø International Symposium on Materials Science, edited by N. Hansen, et al., Risø National Laboratory, Roskilde, Denmark (2000).

[25] O.V. Mishin, D. Juul Jensen, N. Hansen: Mat. Sci. Eng. A Vol. 342 (2003), p.320.

[26] A. P. Zhilyaev, N.P. Baro, G.V., Nurislamova, B. -K. Kim, J.A. Szpunar, T.G. Langdon.: Acta Mat. Vol. 51 (2003), p.753.

DOI: 10.1016/s1359-6454(02)00466-4

[27] W.Q. Cao, A. Godfrey, Q. Liu: Mat. Sci. Eng. A Vol. 361 (2003), p.9.

[28] K. V. Ivanov, E. V. Naydenkin: Phys. Metals & Metallography Vol. 106 (2008), p.411.

[29] J.R. Bowen, O.V. Mishin, P.B. Prangnell, D. Juul Jensen: Scripta Mat. Vol. 47 (2002), p.289.

[30] R.Z. Valiev, E.V. Kozlov, Yu.F. Ivanov, N.A. Koneva, N.A. Popova: Acta Met. Mater. Vol. 42 (1994), p.2467.

[31] H. Gleiter, B. Chalmers: High-angle grain boundaries (Pergamon Press, USA 1972).

[32] R.L. Coble: J. Appl. Phys. Vol. 34 (1963), p.1679.

[33] K.V. Ivanov, E.V. Naydenkin: Rev. Adv. Mater. Sci. Vol. 25 (2010), p.176.

[34] E.V. Kozlov, N.A. Koneva, A.N. Zhdanov, N.A. Popova, Yu. F. Ivanov.: Phys. Mesomech. Vol. 7 (2004), p.93.

[35] I. Sabirov, M.R. Barnett, P. d. Hodgson, Y. Estrin, J. Timbhina: Acta Mat. Vol. 56 (2008), p.2223.

[36] N.I. Noskova: Deformation and fracture of materials. Vol. 4 (2009), p.17 (in Russian).

[37] М.М. Mishlyaev, S. Yu. Mironov: Fizika tverdogo tela Vol. 44 (2002), p.711 (in Russian).

[38] P.H. Pumphrey, H. Gleiter: Phil. Mag Vol. 32 (1975), p.881.

[39] N.A. Koneva, L.I. Trishkina, A.N. Zhdanov, O.B. Perevalova, N.A. Popova, E.V. Kozlov: Phys. Mesomech. Vol. 9 (2006), p.93.

[40] R.S. Mishra: Minerals, Metals and Mater. Soc. (2000), p.421.

[41] G.P. Grabovetskaya, I.P. Mishin, Yu.R. Kolobov: Russian J. Non-Ferrous Metals No. 2 (2009), p.42.

[42] Yu.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, M.B. Ivanov: Defect and Diffusion Forum Vol. 216-217 (2003), p.253.

DOI: 10.4028/

[43] M.V. Grabskii: Structural superplasticity of metals (Metallurgy, Russia 1975). (in Russian).

[44] Yu.R. Kolobov, G.P. Grabovetskaya, K.V. Ivanov, N.V. Girsova: Phys. Metals & Metall. Vol. 95 (2001), p.532.

Fetching data from Crossref.
This may take some time to load.